Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Anticancer Agents Med Chem ; 23(14): 1689-1696, 2023.
Article in English | MEDLINE | ID: mdl-37151056

ABSTRACT

BACKGROUND: The polysaccharide extract of C. sinensis, Isaria felina (IF), has antitumor effects. Selenium (Se) can improve disease prevention and reduce the toxicity of toxic elements, but the effect of Se-enriched IF on hepatoma remains unknown. OBJECTIVE: To determine the organic transformation of Se and compare the antitumor effects between Se-enriched IF (IF-Se) and IF on xenograft H22 hepatoma-bearing mice. METHODS: Se was added to the solid-state culture medium, and the organic Se content was detected by HPLC-ICP-MS. Forty-two Kunming mice were randomly divided into seven groups to test the antitumor effects of low- (300 mg/kg) and high- (600 mg/kg) doses of IF-Se and IF through xenograft. Huai'er granules were administered as the positive control. In addition, interleukin (IL)-2 and vascular endothelial growth factor (VEGF) expressions were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry method. RESULTS: The conversion rate in the IF-Se70, IF-Se140, and IF-Se280 groups were 91.5%, 93.4%, and 89.3%, respectively. Therefore, IF-Se140 was used to carry out the subsequent experiments. The tumor inhibition rates of IF-Se were significantly higher compared with IF (P < 0.05). Moreover, the spleen coefficient, IL-2, and VEGF expression levels significantly decreased (all Ps < 0.05), and the thymus coefficient significantly increased (P < 0.05) in the high-dose IF-Se group compared with the model control group. CONCLUSION: The inhibitory effects of IF on H22 hepatoma-bearing mice were enhanced after Se enrichment. Therefore, Se-enriched IF might be a new strategy for treating hepatoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Selenium , Mice , Humans , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Vascular Endothelial Growth Factor A , Selenium/pharmacology , Cell Line, Tumor , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Vascular Endothelial Growth Factors
2.
Zhongguo Gu Shang ; 35(11): 1060-4, 2022 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-36415192

ABSTRACT

OBJECTIVE: To investigate the relationship between serum C1q/tumor necrosis factor-related protein-3(CTRP3) and peroxisome proliferator-activated receptor γ coactivator-1α(PGC-1α) on predictive value of expression level on fracture healing. METHODS: From January 2019 to January 2020, 80 patients with traumatic tibial plateau fractures were treated by internal fixation with support plates through the posterior approach of the knee joint. The patients were followed up for 12 months. According to the criteria for delayed fracture healing, the patients were divided into two groups:54 patients in fracture healing group included 24 males and 30 females, aged 29 to 75 years old with an average of (52.36±13.17) years;In the delayed healing group, there were 26 cases, 13 males and 13 females, aged from 29 to 75 with an average od (53.82±13.52) years. The serum levels of CTRP3, PGC-1αand 25 hydroxyvitamin D3[25(OH)D3] in patients with traumatic fracture were detected by enzyme-linked immunosorbent assay(ELISA);Blood phosphorus and calcium levels were measured by automatic biochemical analyzer, and the product of calcium and phosphorus was calculated;Pearson's method was used to analyze the correlation between serum CTRP3, PGC-1αand bone biochemical indexes in patients with delayed union one week after operation;The predictive value of serum levels of CTRP3 and PGC-1αon traumatic fracture healing was analyzed by receiver operating characteristic curve(ROC curve). RESULTS: PGC-1α, calcium phosphorus product and 25(OH)D3 in the fracture healing group were higher than those in the delayed healing group at 1 and 4 weeks after operation(P<0.05). Serum CTRP3 was positively correlated with PGC-1α(r=0.637, P<0.05) and positively correlated with calcium phosphorus product and 25(OH)D3(P<0.05). The areas under the curve(AUC) of serum ctrp3 and PGC-1α levels in predicting traumatic fracture healing were 0.845 and 0.855, respectively. The cutoff values were 188.678 pg/ml and 2.697 ng/ml, respectively. The specificity was 96.2% and 80.8%, and the sensitivity was 53.7% and 77.8%;The predicted AUC was 0.904, the specificity was 88.5%, and the sensitivity was 81.5%. CONCLUSION: The serum levels of CTRP3 and PGC-1 in patients with delayed union of traumatic fracture at 1 and 4 weeks after operation α The expression level is of certain reference value to predict the fracture healing status of patients.


Subject(s)
Fracture Healing , Tibial Fractures , Male , Humans , Adult , Middle Aged , Aged , Calcium , Tibial Fractures/surgery , Bone and Bones , Phosphorus
3.
Article in English | MEDLINE | ID: mdl-35132325

ABSTRACT

BACKGROUND: Cryptotanshinone (CPT), an active component extracted from the root of Salvia miltiorrhiza Bunge, exhibits extensive favorable bioactive properties including anti-inflammatory, antioxidative, antibacterial, and antitumor effects. This study aims to investigate the effects of CPT on osteogenesis and explore related mechanisms both in vivo and in vitro. METHODS: In the in vivo experiment, ovariectomized (OVX) female rats were intragastrically administered with CPT at doses of 10 mg/kg and 20 mg/kg for 13 consecutive weeks. Dual-energy X-ray absorptiometry was employed to detect bone mineral density (BMD). ELISA assay was leveraged to detect the biochemical parameters such as BUN and creatinine in the kidney samples. Bone and kidney sections were dyed by H&E and Masson staining kits. In the in vitro experiment, the RAW 264.7 cells were stimulated through the receptor activation of the nuclear factor kappa B ligand (RANKL) to establish an osteoclast differentiation model, and CPT's protective effect against bone loss was evaluated. Differentiated osteoclasts were determined by TRAP staining. While, osteoclast-marker proteins such as NFATc1, c-Fos, and cathepsin K were identified by Western blot. RESULTS: The results from in vivo experiments revealed that CPT could elevate bone mass and increase bone formation markers in OVX rats. Intriguingly, CPT administration noticeably ameliorated the kidney injury in OVX rats by suppressing BUN and restoring creatinine levels. Furthermore, the results from in vitro experiments suggested that CPT downregulated the protein expression of osteoclast-associated genes such as cathepsin K, c-Fos, and NFATc1 which hinted the related potential mechanisms. CONCLUSION: The evidence from in vivo and in vitro experiments suggested that CPT exerted antiosteoclastogenic effects by inhibiting the activation of osteoclast differentiation followed by suppressing the protein expressions of cathepsin K, c-Fos, and NFATc1 in osteoclast precursors, and it exhibited protective effects against kidney damage, which highlighted its advantage in clinical application.

4.
Nat Prod Res ; 36(1): 186-192, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32594764

ABSTRACT

Two new iridoid glycosides, 2'-O-cis-coumaroylgardoside (1), and 6'-O-caffeoylioxide (2), were isolated from the fruit of Gardenia jasminoides. The structures of these compounds were elucidated based on spectroscopic analysis (HR-ESI-MS, NMR) and chemical methods. The anti-inflammatory activities of the isolates were evaluated by measuring their inhibitory effects on PGE2 production in LPS stimulated RAW 264.7 macrophages, compounds 1 and 2 could reduce PGE2 levels in LPS-activated RAW 264.7 macrophages with IC50 values of 121.4 and 83.38 µM, respectively.


Subject(s)
Anti-Inflammatory Agents , Gardenia , Iridoid Glycosides , Animals , Anti-Inflammatory Agents/pharmacology , Fruit/chemistry , Gardenia/chemistry , Iridoid Glycosides/pharmacology , Mice , Plant Extracts/pharmacology , RAW 264.7 Cells
5.
Biol Trace Elem Res ; 200(9): 4027-4034, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34761357

ABSTRACT

Aluminum oxide nanoparticles (Al2O3NPs) are one class of widely used nanomaterials. However, the teratogenicity toxicity of Al2O3NPs in mammal remains poorly understood. This study was aimed to evaluate the teratogenicity of Al2O3NPs in Sprague Dawley (SD) rats by gavage and to compare the effects of Al2O3NPs to those of equivalent dose of microscale aluminum oxide (bulk Al2O3). Sixty pregnant rats were randomly divided into 5 groups and treated with 100 and 200 mg/kg body weight (bw) Al2O3NPs (30 nm), 200 mg/kg bulk Al2O3, deionized water (as the negative control), and 300 mg/kg aspirin (as the positive control). Rats were exposed daily by oral gavage from the 7th day of gestation for 10 consecutive days and sacrificed on the 20th day of gestation. Results of the study showed that there were no significant effects of Al2O3NPs on pregnant rats (clinical signs, body weight, food consumption, ovary and uterus weight, number of corpora lutea) and fetuses (body weight, sex, body length, tail length, skeletal and visceral development). Under the experimental conditions of the present study, 10 consecutive days of repeated oral administration of Al2O3NPs at doses of up to 200 mg/kg/day did not induce any treatment-related teratogenicity in SD rats. Accordingly, the NOAEL was determined to be 200 mg/kg Al2O3NPs (106 mg Al/kg bw/day) in rats. The teratogenic effects of Al2O3NPs in rats were comparable to those of the bulk Al2O3 of same doses (200 mg/kg).


Subject(s)
Aluminum Oxide , Nanoparticles , Aluminum Oxide/toxicity , Animals , Body Weight , Female , Fetus , Mammals , Pregnancy , Rats , Rats, Sprague-Dawley
6.
Mol Med Rep ; 23(2)2021 02.
Article in English | MEDLINE | ID: mdl-33300076

ABSTRACT

Neuropathic pain is induced by primary injury and dysfunction of the nervous system, and is accompanied by the activation of inflammation signaling pathways. Yin Yang 1 (YY1) is reported to be involved in inflammation; however, its role in the development of neuropathic pain is still unclear. In the present study, a neuropathic pain model was established using the bilateral chronic constriction injury (bCCI) method in rats. The indexes of neuropathic pain were detected, including paw mechanical withdrawal threshold (MWT), paw thermal withdrawal latency (PTWL) and paw frequency in response to cold stimulus, characterizing the symptoms of mechanical allodynia, thermal hyperalgesia and cold hyperalgesia, respectively. YY1 mRNA expression was significantly decreased in the spinal cord cells of bCCI rats. In addition, YY1 was overexpressed in the bCCI rats by intrathecally injecting different doses of the pcDNA­YY1. YY1 reduced rat mechanical allodynia, thermal hyperalgesia and cold hyperalgesia in a dose­dependent manner. Furthermore, YY1 increased the expression of suppressor of cytokine signaling 3 (SOCS3) and suppressed signal transducer and activator of transcription 3 (STAT3)­mediated production of inflammatory factors in a dose­dependent manner. Finally, YY1 were respectively overexpressed and knocked down in primary spinal cord cells. The results revealed that YY1 overexpression promoted SOCS3 expression, increased cell proliferation and suppressed cell apoptosis, and reduced the activation of STAT3 and STAT3­mediated production of inflammatory factors. YY1 knockdown induced the opposite effect to that observed following YY1 overexpression. Furthermore, blockade of SOCS3 by SOCS3­antibody abrogated the effect of YY1 overexpression on the suppression of SOCS3­mediated STAT3 activation and inflammation. In conclusion, YY1 alleviated neuropathic pain by inhibiting the STAT3 signaling pathway, which may be due to the upregulation of SOCS3 expression.


Subject(s)
Gene Expression Regulation , Neuralgia/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein/biosynthesis , YY1 Transcription Factor/metabolism , Animals , Disease Models, Animal , Female , Inflammation/metabolism , Inflammation/pathology , Neuralgia/pathology , Rats , Rats, Sprague-Dawley
7.
BMC Cancer ; 19(1): 1126, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31747895

ABSTRACT

BACKGROUND: TAE-gene therapy for hepatoma, incorporating the tumor-targeted therapeutic efficacy of trans-arterial embolization, hydroxyapatite nanoparticles (nHAP) and anti-cancer wild-type p53 gene (wt-p53), was presented in our former studies (Int J Nanomedicine 8:3757-68, 2013, Liver Int 32:998-1007, 2012). However, the incompletely antitumoral effect entails defined guidelines on searching properer materials for this novel therapy. METHODS: Unmodified nHAP, Ca(2+) modified nHAP, poly-lysine modified nHAP and liposome were separately used to form U-nanoplex, Ca-nanoplex, Pll-nanoplex, L-nanoplex respectively with wt-p53 expressing plasmid. The four nanoplexs were then applied in vitro for human normal hepacyte L02 and hepatoma HePG2 cell line, and in vivo for rabbits with hepatic VX2 tumor by injection of nanoplexs/lipiodol emulsion into the hepatic artery in a tumor target manner. The distribution, superficial potential, physical structure, morphology and chemical compositions of nanoplexs were evaluated by TEM, SEM, EDS etc., with the objective of understanding their roles in hepatoma TAE-gene therapy. RESULTS: In vitro, L-nanoplex managed the highest gene transferring efficiency. Though with the second highest transfection activity, Pll-nanoplex showed the strongest tumor inhibition activity while maintaining safe to the normal hepacyte L02. In fact, only Pll-nanoplex can combine both the antitumoral effect to HePG2 and safe procedure to L02 among the four systems above. In vivo, being the only one with successful gene transference to hepatic VX2 tumor, Pll-nanoplex/lipiodol emulsion can target the tumor more specifically, which may explain its best therapeutic effect and hepatic biologic response. Further physical characterizations of the four nanoplexs suggested particle size and proper electronic organic surface may be crucial for nano-TAE gene therapy. CONCLUSION: Pll-nanoplex is the most proper system for the combined therapy due to its selectively retention in liver cancer cells, secondary to its morphological and physico-chemical properties of nanometric particle size, steady emulsion, proper organic and electronic surface.


Subject(s)
Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic , Genetic Therapy , Liver Neoplasms/therapy , Tumor Suppressor Protein p53/genetics , Animals , Carcinoma, Hepatocellular/diagnosis , Chemoembolization, Therapeutic/adverse effects , Chemoembolization, Therapeutic/methods , Emulsions , Ethiodized Oil/administration & dosage , Female , Genetic Therapy/adverse effects , Genetic Therapy/methods , Humans , Liver Neoplasms/diagnosis , Male , Nanoparticles , Rabbits , Theranostic Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL