Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Cell Death Dis ; 15(2): 145, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360744

ABSTRACT

Cancer cells develop multiple strategies to evade T cell-mediated killing. On one hand, cancer cells may preferentially rely on certain amino acids for rapid growth and metastasis. On the other hand, sufficient nutrient availability and uptake are necessary for mounting an effective T cell anti-tumor response in the tumor microenvironment (TME). Here we demonstrate that tumor cells outcompete T cells for cystine uptake due to high Slc7a11 expression. This competition induces T-cell exhaustion and ferroptosis, characterized by diminished memory formation and cytokine secretion, increased PD-1 and TIM-3 expression, as well as intracellular oxidative stress and lipid-peroxide accumulation. Importantly, either Slc7a11 deletion in tumor cells or intratumoral cystine supplementation improves T cell anti-tumor immunity. Mechanistically, cystine deprivation in T cells disrupts glutathione synthesis, but promotes CD36 mediated lipid uptake due to dysregulated cystine/glutamate exchange. Moreover, enforced expression of glutamate-cysteine ligase catalytic subunit (Gclc) promotes glutathione synthesis and prevents CD36 upregulation, thus boosting T cell anti-tumor immunity. Our findings reveal cystine as an intracellular metabolic checkpoint that orchestrates T-cell survival and differentiation, and highlight Gclc as a potential therapeutic target for enhancing T cell anti-tumor function.


Subject(s)
Cystine , Ferroptosis , Cystine/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Glutathione/metabolism , Lipids
2.
Huan Jing Ke Xue ; 44(11): 6387-6398, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973120

ABSTRACT

Effects of continuous cropping on rhizosphere soil physical and chemical properties, soil microbial activity, and community characteristics of Codonopsis pilosula were investigated. The C. pilosula plot(CK) fallow for five years and C. pilosula fields with different years of continuous cropping were studied using Illumina high-throughput sequencing technology combined with soil physical and chemical properties analysis. The response of rhizosphere soil physical and chemical properties, microbial activities, and microbial community characteristics to continuous cropping years of C. pilosula were investigated. The results were as follows:the contents of organic carbon, total phosphorus, total nitrogen, and salt in rhizosphere soil of C. pilosula increased with the extension of continuous cropping years. However, soil pH value decreased with the extension of continuous cropping years. Compared with that in the CK treatment, rhizosphere soil organic carbon content of C. pilosula in continuous cropping for one, two, three, and four years increased by 11.1%, 80.5%, 74.9%, and 78.2%, respectively. Total phosphorus content increased by 11.8%, 52.9%, 66.7%, and 78.4%, and total nitrogen content increased by 31.3%, 68.8%, 52.1%, and 56.3%, respectively. Soil salt content increased significantly under continuous cropping of three and four years, and soil conductivity increased by 54.2% and 84.7% compared with that in the CK treatment, respectively. The C/N ratio of microbial biomass in rhizosphere soil exhibited an increasing trend with the extension of continuous cropping years. Soil respiration entropy and microbial entropy showed a decreasing trend. With the increase in continuous cropping years, the diversity and abundance of bacteria in soil decreased, whereas the diversity and abundance of fungi increased. In addition, with the increase in continuous cropping years, the antagonistic effect between bacterial communities was enhanced, whereas the synergistic effect between fungal communities was mainly observed. Correlation analysis showed that soil total phosphorus, available potassium, carbon to nitrogen ratio of microbial biomass, soil respiration entropy, microbial biomass carbon, and electrical conductivity were the main factors affecting the changes in soil bacterial community characteristics. Soil total nitrogen, available potassium, available phosphorus, and soil respiration entropy were the main factors affecting the changes in fungal community characteristics. In conclusion, continuous cropping significantly changed the physical and chemical properties of soil and microbial activity and affected the abundance and diversity of bacteria and fungi in soil. This changed the interaction between microorganisms, which disrupted the stability of microbial communities in the soil.


Subject(s)
Codonopsis , Soil , Soil/chemistry , Carbon , Rhizosphere , Soil Microbiology , Fungi , Bacteria/genetics , Nitrogen , Phosphorus , Potassium
3.
J Hazard Mater ; 459: 132285, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37591174

ABSTRACT

Starvation and antibiotics pollution are two frequent perturbations during breeding wastewater treatment process. Supplying magnetite into anaerobic system has been proved efficient to accelerate microbial aggregates and alleviate the adverse effect caused by process disturbance. Nevertheless, whether these magnetite-based granules are still superior over normal granules after a long-term starvation period remains unknown, the responsiveness of these granules to antibiotics stress is also ambiguous. In current study, we investigated the resilience of magnetite-based anaerobic granular sludge (AnGS) to starvation and oxytetracycline (OTC) stress, by unravelling the variations of reactor performance, sludge properties, ARGs dissemination and microbial community. Compared with the AnGS formed without magnetite, the magnetite assisted AnGS appeared more robust defense to starvation and OTC stress. With magnetite supplement, the average methane yield after starvation recovery, 50 mg/L and 200 mg/L OTC stress was enhanced by 48.95%, 115.87% and 488.41%, respectively, accompanied with less VFAs accumulation, improved tetracycline removal rate (76.3-86.6% vs. 51.0-53.5%) and higher ARGs reduction. Meanwhile, magnetite supplement effectively ameliorated the potential sludge breakage by triggering more large granules formation. Trichococcus was considered an important impetus in maintaining the stability of magnetite-based AnGS process. By inducing more syntrophic methanogenesis partnerships, especially for hydrogenotrophic methanogenesis, magnetite ensured the improved reactor performance and stronger resilience at stress conditions.


Subject(s)
Oxytetracycline , Ferrosoferric Oxide , Sewage , Anti-Bacterial Agents , Dietary Supplements
4.
Bioresour Technol ; 341: 125783, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34418842

ABSTRACT

In this study, the effect of magnetite amendment on anaerobic digestion was investigated at three increasing salinity levels (0.5%, 1% and 2% NaCl). The amendment of magnetite enhanced the methane yield by 36.3%, 33.3% and 16.5% at low salinity (0.5% NaCl) and high salinity (1% and 2% NaCl), respectively. Meanwhile, a larger proportion of granules was obtained in the magnetite amended reactor (48.05% vs 33.16% at the end of operation). Microbial analysis suggested magnetite could induce more methanogenesis partnerships between hydrogenotrophic methanogens and syntrophic bacteria. Methanosaeta and Methanocorpusculum were the alternating dominant methanogens at low salinity and high salinity. While Streptococcus and Mesotoga were two prevalent bacteria that showed totally different transition tendency in two reactors. Additionally, the supplement of magnetite could relieve the suppression of methanogenesis-related gene expression caused by salinity, thus facilitated the higher methane production.


Subject(s)
Microbiota , Wastewater , Anaerobiosis , Biomass , Bioreactors , Ferrosoferric Oxide , Methane
5.
Bioresour Technol ; 329: 124928, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33690060

ABSTRACT

In current study, the enhancement effect of magnetite on anaerobic digestion was evaluated at increased organic loading rate (OLR) from 1.6 to 25.6 kg COD·m-3·d-1. The supplement of magnetite enhanced the methane yield by 7-483% accompanied with faster VFAs conversion. Microbial analysis suggested the varied enhancing effect achieved at different OLRs was attributed to different syntrophic interactions triggered by magnetite. More specially, an electroactive syntropy was established between Trichococcus with Methanobacterium at OLR lower than 6.4 kg COD·m-3·d-1, while with the OLR increase, more acid fermentative bacteria (Propionimicrobium, Syner-01) were enriched and further enhanced methanogenesis in a syntrophic way with Methanosaeta. Overall, the incorporation of magnetite was a promising approach to achieve efficient anaerobic digestion, OLR was also critical factor affecting the methanogenesis and should be carefully regulated in future application.


Subject(s)
Bioreactors , Microbiota , Anaerobiosis , Ferrosoferric Oxide , Methane
6.
Theranostics ; 10(18): 8415-8429, 2020.
Article in English | MEDLINE | ID: mdl-32724478

ABSTRACT

Rationale: Dysfunction or reduced levels of EAAT2 have been documented in epilepsy. We previously demonstrated the antiepileptic effects of Hsp90 inhibitor 17AAG in temporal lobe epilepsy by preventing EAAT2 degradation. Because of the potential toxicities of 17AAG, this study aimed to identify an alternative Hsp90 inhibitor with better performance on Hsp90 inhibition, improved blood-brain barrier penetration and minimal toxicity. Methods: We used cell-based screening and animal models of epilepsy, including mouse models of epilepsy and Alzheimer's disease, and a cynomolgus monkey model of epilepsy, to evaluate the antiepileptic effects of new Hsp90 inhibitors. Results: In both primary cultured astrocytes and normal mice, HSP990 enhanced EAAT2 levels at a lower dose than other Hsp90 inhibitors. In epileptic mice, administration of 0.1 mg/kg HSP990 led to upregulation of EAAT2 and inhibition of spontaneous seizures. Additionally, HSP990 inhibited seizures and improved cognitive functions in the APPswe/PS1dE9 transgenic model of Alzheimer's disease. In a cynomolgus monkey model of temporal lobe epilepsy, oral administration of low-dose HSP990 completely suppressed epileptiform discharges for up to 12 months, with no sign of hepatic and renal toxicity. Conclusions: These results support further preclinical studies of HSP990 treatment for temporal lobe epilepsy.


Subject(s)
Alzheimer Disease/drug therapy , Anticonvulsants/administration & dosage , Epilepsy, Temporal Lobe/drug therapy , Excitatory Amino Acid Transporter 2/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Pyridones/administration & dosage , Pyrimidines/administration & dosage , Administration, Oral , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Anticonvulsants/adverse effects , Astrocytes , Cells, Cultured , Cognition/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/pathology , Female , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Humans , Kainic Acid/administration & dosage , Kainic Acid/toxicity , Macaca fascicularis , Male , Mice , Mice, Transgenic , Pentylenetetrazole/administration & dosage , Pentylenetetrazole/toxicity , Primary Cell Culture , Pyridones/adverse effects , Pyrimidines/adverse effects , Temporal Lobe/drug effects , Temporal Lobe/pathology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL