Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Chem Toxicol ; 149: 111938, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33348051

ABSTRACT

The objective of this study was to use isobaric tags for relative and absolute quantitation (iTRAQ) proteomic technology to systematically analyze the hepatotoxic mechanism of aflatoxin B1 (AFB1) and its prevention by Se in broilers. Four groups of day-old broilers were allocated into a 2 × 2 factorial design trial that fed a Se-deficient based diet (BD) or the BD + 1.0 mg AFB1/kg, 0.3 mg Se/kg, or 1.0 mg AFB1/kg plus 0.3 mg Se/kg for 3 wk. Dietary AFB1 increased serum ALT and decreased total protein and albumin concentrations, and induced hepatic histopathological lesions in Se adequate groups. Notably, Se deficiency exacerbated these AFB1-induced changes. Furthermore, Se deficiency reduced hepatic glutathione peroxidase but increased thioredoxin reductase and glutathione S-transferase activities and 8-hydroxydeoxyguanosine concentration in AFB1 administrated groups. Moreover, AFB1 dysregulated 261 co-differentially expressed proteins (DEPs) in both Se adequate and deficiency diets, and Se deficiency dysregulated 64 DEPs in AFB1 administrated diets. These DEPs are mainly related to phase I and II metabolizing enzymes, heat shock proteins, DNA repair, fatty acid metabolism and apoptosis. The in vitro study has verified that aldo-keto reductase family1, member10 plays an important role in AFB1-induced hepatotoxicity and Se-mediated detoxification of AFB1 in a chicken leghorn male hepatoma cells. Conclusively, this study has analyzed the hepatic proteome response to dietary AFB1 and Se, and thus shed new light on the mechanisms of hepatotoxicity of AFB1 and its detoxification by Se in broilers.


Subject(s)
Aflatoxin B1/toxicity , Animal Feed/analysis , Cell Death/drug effects , Chickens , Poultry Diseases/chemically induced , Selenium/deficiency , Animals , Cell Line, Tumor , Cell Survival/drug effects , Chemical and Drug Induced Liver Injury/veterinary , Diet/veterinary , Gene Expression Regulation/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Poultry Diseases/prevention & control , Selenium/administration & dosage , Signal Transduction/drug effects
2.
Animals (Basel) ; 9(12)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795481

ABSTRACT

This study determined the effects of increased consumption of sulfur amino acids (SAA), as either DL-Met or Hydroxy-Met (OH-Met), by sows and piglets on their performance and the ability of the progeny to resist a lipopolysaccharide (LPS) challenge. Thirty primiparous sows were fed a diet adequate in SAA (CON) or CON + 25% SAA, either as DL-Met or OH-Met from gestation day 85 to postnatal day 21. At 35 d old, 20 male piglets from each treatment were selected and divided into 2 groups (n = 10/treatment) for a 3 × 2 factorial design [diets (CON, DL-Met or OH-Met) and challenge (saline or LPS)]. OH-Met and/or DL-Met supplementation increased (p ≤ 0.05) piglets' body weight gain during day 0-7 and day 7-14. Sow's milk quality was improved in the supplemented treatments compared to the CON. The LPS challenge decreased (p ≤ 0.05) piglets' performance from 35 to 63 d and increased (p ≤ 0.05) the levels of aspartate aminotransferase, total bilirubin, IL-1ß, IL-6, TNF-a, and malondialdehyde. Plasma albumin, total protein, total antioxidant capacity and glutathione peroxidase decreased post-challenge. The results were better with OH-Met than DL-Met. The increase of Met consumption, particularly as OH-Met increased piglets' growth performance during the lactation phase and the challenging period.

3.
Poult Sci ; 97(9): 3166-3175, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29850886

ABSTRACT

The objective of this study was to compare the bio-efficacy of 2-hydroxy-4-methylthiobutanoic acid (DL-HMTBA) with that of DL-methionine (DLM) as sources of methionine in terms of the growth performance, carcass traits, feather growth, and redox statuses of Cherry Valley ducks. Six hundred and thirty male ducks were randomly allotted to 9 dietary treatment groups with 7 replicates of 10 birds each. The first group received a basal diet (BD) without methionine addition that was deficient in the total number of sulfur amino acids. In Groups 2 to 5 and Groups 6 to 9, the BD was supplemented with 4 increasing doses of methionine as either DLM or DL-HMTBA. The trial was run from ages 1 to 42 d. Dietary supplementation with DLM and DL-HMTBA improved body weight gain and feed intake as well as weights of carcasses, breast meat, and feathers compared with the BD. No significant difference was observed between the 2 methionine sources on growth performance, carcass traits, and feather growth. Concentrations of some redox markers in the pectoralis major muscle were improved by addition of methionine to the BD. However, a significant difference was observed between DLM and DL-HMTBA in this respect, as the supplementation of DL-HMTBA significantly increased the total antioxidant capacity, the activities of glutathione peroxidase, and the concentration of reduced glutathione in the pectoralis major muscle, compared with DLM. No significant difference between methionine sources was found with regard to the concentrations of oxidized glutathione and malondialdehyde in the pectoralis major muscle. Both DLM and DL-HMTBA increased malondialdehyde concentrations in the pectoralis major muscle compared with the BD. In conclusion, these results indicated that DLM and DL-HMTBA have equal biological value for the growth performance, carcass traits, and feather growth of Cherry Valley duck. Moreover, the improved antioxidant capacity observed with DL-HMTBA makes this a better candidate than DLM for lowering the oxidation process in the meat during post-mortem storage and thereby contributes to a better duck meat quality.


Subject(s)
Antioxidants/metabolism , Dietary Supplements/analysis , Ducks/physiology , Feathers/growth & development , Methionine/analogs & derivatives , Racemethionine/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dose-Response Relationship, Drug , Ducks/growth & development , Feathers/drug effects , Male , Methionine/administration & dosage , Methionine/pharmacology , Racemethionine/administration & dosage , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL