Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Ethnopharmacol ; 293: 115310, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35452773

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Areca Thirteen Pill, also called Gao You-13 (GY-13), is a traditional Mongolian herbal formula and has been extensively used to treat depression in Mongolian areas, which belongs to Heyi disease in Mongolian medicine. Major depressive disorder is a serious psychiatric disease, only one-third of individuals with depression are responsive to current antidepressants in clinic. Growing attention has been attracted by traditional herbal medicines in fighting depression because they are considered safer alternatives to pharmacotherapy. AIM OF THE STUDY: To reveal the mechanism of GY-13 in the treatment of depression. MATERIALS AND METHODS: The rat depression model was established by chronic unpredictable mild stress (CUMS), and primary hippocampal neurons were used to construct a glutamate-induced excitotoxicity model. The antidepressant effect of GY-13 was then assessed by performing sucrose preference tests, open field tests, and body weight measurements on rats. The expression of cAMP and PKA, mRNA levels of brain-derived neurotrophic factor (BDNF) and cAMP response element binding protein (CREB), and hippocampal neuronal apoptosis were measured. RESULTS: The results indicate that GY-13 significantly improves depression-like behavior, rescues decreased cAMP, PKA, recovers the mRNA levels of CREB and BDNF, and increases the proliferative activity of hippocampus. In addition, blockade of PKA reverses the effects of GY-13 treatment on CREB mRNA, BDNF mRNA levels. In vitro, GY-13 treatment increased hippocampal proliferative activity and attenuated Glu-induced apoptosis of hippocampal neurons as well as reduced CREB mRNA and BDNF mRNA expression levels. CONCLUSIONS: Our research demonstrated that GY-13 treatment exerted a potent antidepressant action via activation of cAMP/CREB/BDNF signaling pathway, promoting proliferation, and suppressing apoptosis. This research provides molecular biological ground for developing GY-13 into a potent alternative for the intervention of depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Depressive Disorder, Major , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Areca , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Depression/metabolism , Depressive Disorder, Major/drug therapy , Hippocampus , Medicine, Mongolian Traditional , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Stress, Psychological/drug therapy
2.
Cell Biol Int ; 44(9): 1870-1880, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32437058

ABSTRACT

The objective of this project was to find a bronchodilatory compound from herbs and clarify the mechanism. We found that the ethanol extract of Folium Sennae (EEFS) can relax airway smooth muscle (ASM). EEFS inhibited ASM contraction, induced by acetylcholine, in mouse tracheal rings and lung slices. High-performance liquid chromatography assay showed that EEFS contained emodin. Emodin had a similar reversal action. Acetylcholine-evoked contraction was also partially reduced by nifedipine (a selective inhibitor of L-type voltage-dependent Ca2+ channels, LVDCCs), YM-58483 (a selective inhibitor of store-operated Ca2+ entry, SOCE), as well as Y-27632 (an inhibitor of Rho-associated protein kinase). In addition, LVDCC- and SOCE-mediated currents and cytosolic Ca2+ elevations were inhibited by emodin. Emodin reversed acetylcholine-caused increases in phosphorylation of myosin phosphatase target subunit 1. Furthermore, emodin, in vivo, inhibited acetylcholine-induced respiratory system resistance in mice. These results indicate that EEFS-induced relaxation results from emodin inhibiting LVDCC, SOCE, and Ca2+ sensitization. These findings suggest that Folium Sennae and emodin may be new sources of bronchodilators.


Subject(s)
Emodin/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Acetylcholine/adverse effects , Acetylcholine/pharmacology , Animals , Bronchodilator Agents/metabolism , Bronchodilator Agents/pharmacology , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Muscle Contraction/physiology , Muscle, Smooth/metabolism , Myosin-Light-Chain Phosphatase/metabolism , Myosin-Light-Chain Phosphatase/physiology , Plant Extracts/pharmacology , Senna Plant/metabolism
3.
Sci Rep ; 8(1): 3114, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29449621

ABSTRACT

Because of the serious side effects of the currently used bronchodilators, new compounds with similar functions must be developed. We screened several herbs and found that Polygonum aviculare L. contains ingredients that inhibit the precontraction of mouse and human airway smooth muscle (ASM). High K+-induced precontraction in ASM was completely inhibited by nifedipine, a selective blocker of L-type voltage-dependent Ca2+ channels (LVDCCs). However, nifedipine only partially reduced the precontraction induced by acetylcholine chloride (ACH). Additionally, the ACH-induced precontraction was partly reduced by pyrazole-3 (Pyr3), a selective blocker of TRPC3 and stromal interaction molecule (STIM)/Orai channels. These channel-mediated currents were inhibited by the compounds present in P. aviculare extracts, suggesting that this inhibition was mediated by LVDCCs, TRPC3 and/or STIM/Orai channels. Moreover, these channel-mediated currents were inhibited by quercetin, which is present in P. aviculare extracts. Furthermore, quercetin inhibited ACH-induced precontraction in ASM. Overall, our data indicate that the ethyl acetate fraction of P. aviculare and quercetin can inhibit Ca2+-permeant LVDCCs, TRPC3 and STIM/Orai channels, which inhibits the precontraction of ASM. These findings suggest that P. aviculare could be used to develop new bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease.


Subject(s)
Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Plant Extracts/pharmacology , Polygonum/chemistry , Quercetin/pharmacology , Acetylcholine/pharmacology , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Humans , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Muscle, Smooth/metabolism , Nifedipine/pharmacology , TRPC Cation Channels/metabolism
4.
Planta Med ; 84(2): 83-90, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28817840

ABSTRACT

This study aimed to elucidate the mechanisms of nuciferine (a main aporphine alkaloid of lotus leaf extract), which can induce relaxation in contracted tracheal rings. Under Ca2+-free and 2 mM Ca2+ conditions, we found that nuciferine had no effect on the resting muscle tone of tracheal rings. In contrast, nuciferine relaxed high K+-contracted mouse tracheal rings in a dose-dependent manner and inhibited both Ca2+ influx and voltage-dependent L-type Ca2+ channel currents induced by high K+. Similarly, nuciferine also inhibited acetylcholine-induced contractions in mouse tracheal rings in a dose-dependent manner. Meanwhile, both acetylcholine-induced intracellular Ca2+ influx and whole-cell currents of nonselective cation channels were blocked by nuciferine. Together, the results indicate that nuciferine-induced relaxation in tracheal rings mainly occurred due to the inhibition of extracellular Ca2+ influx through the blockade of voltage-dependent L-type Ca2+ channels and/or nonselective cation channels. These results suggest that nuciferine has a therapeutic effect on respiratory diseases associated with the aberrant contraction of airway smooth muscles and/or bronchospasm.


Subject(s)
Aporphines/pharmacology , Drugs, Chinese Herbal/pharmacology , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Nelumbo/chemistry , Parasympatholytics/pharmacology , Trachea/drug effects , Acetylcholine/metabolism , Animals , Aporphines/chemistry , Aporphines/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Muscle, Smooth/metabolism
5.
Article in English | MEDLINE | ID: mdl-29259649

ABSTRACT

Artemisia annua L. belongs to the Asteraceae family, which is indigenous to China. It has valuable pharmacological properties, such as antimalarial, anti-inflammatory, and anticancer properties. However, whether it possesses antiasthma properties is unknown. In the current study, chloroform extract of Artemisia annua L. (CEAA) was prepared, and we found that CEAA completely eliminated acetylcholine (ACh) or high K+-elicited (80 mM) contractions of mouse tracheal rings (TRs). Patch-clamp technique and ion channel blockers were employed to explore the underlying mechanisms of the relaxant effect of CEAA. In whole-cell current recording, CEAA almost fully abolished voltage-dependent Ca2+ channel (VDCC) currents and markedly enhanced large conductance Ca2+-activated K+ (BK) channel currents on airway smooth muscle cells (ASMCs). In single channel current recording, CEAA increased the opening probability but had no effect on the single channel conductance of BK channels. However, under paxilline-preincubated (a selective BK channel blocker) conditions, CEAA only slightly increased BK channel currents. These results indicate that CEAA may contain active components with potent antiasthma activity. The abolished VDCCs by CEAA may mainly contribute to the underlying mechanism through which it acts as an effective antiasthmatic compound, but the enhanced BK currents might play a less important role in the antiasthmatic effects.

6.
Phytomedicine ; 23(13): 1591-1598, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27823623

ABSTRACT

BACKGROUND: Aconitum brachypodum Diels (Family Ranunculaceae) is a Chinese ethnodrug and is well known for both its therapeutic application and high toxicity. However, no detoxication strategy is available for the complete elimination of the toxicity of Aconitum plants. Veratrilla baillonii Franch is believed to possess antitoxic effects on the toxicity induced by Aconitum plants and has been clinically used for hundreds of time by Naxi and Lisu nationalities in Yunnan Province of China. To further address the mechanism of the detoxication of Veratrilla baillonii, the effect of water decoction of Veratrilla baillonii (WVBF) on subacute toxicology of SD rats induced by Aconitum brachypodum (CFA), a genus Aconitum, was determined and studied in the present work. METHODS: The clinical behavior and number of survivors for different dosage of WVBF (25, 50, 100mg/kg) on CFA (4mg/kg) induced rats were observed until day 28. Histological changes and haematological parameters were evaluated. Moreover, Na+-K+-ATPase pathway in heart as well as key enzymes in liver were determined to further discuss the mechanism. RESULTS: The results showed that the exposure of CFA led to some subacute toxicity to rats, especially male ones, accompanied with abnormality of serum biochemical index in rats' serum. The toxicological target organs of CFA may be the heart, liver, kidney and brain. It is demonstrated that WVBF could attenuate the toxicity induced by Aconitum brachypodum via promoting the metabolic enzymes CYP3A1 and CYP3A2 in liver, downregulating the expression of Sodium/Calcium exchanger 1 (NCX1) and SCN5A sodium channal mRNA, and inducing Na+/K+-ATPase activity in heart. This study provides insights into detoxifying measures of Aconitum plants. CONCLUSIONS: Aconitum brachypodum may lead to subacute toxicity of rats after long term of administration, and the toxicity could be attenuated by Veratrilla baillonii via promoting the metabolic enzymes in liver, downregulating the expression of NCX1 and SCN5A mRNA, and inducing Na+/K+-ATPase activity in heart.


Subject(s)
Aconitum/toxicity , Gentianaceae/chemistry , Plant Extracts/pharmacology , Animals , China , Cytochrome P-450 CYP3A/metabolism , Down-Regulation/drug effects , Female , Heart/drug effects , Inactivation, Metabolic/drug effects , Kidney/drug effects , Liver/drug effects , Liver/metabolism , Male , Medicine, Chinese Traditional , Rats, Sprague-Dawley , Sodium-Calcium Exchanger/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
7.
Nephrology (Carlton) ; 18(2): 111-6, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23216977

ABSTRACT

AIM: Ghrelin can act as a signal for meal initiation and play a role in the regulation of gastrointestinal (GI) motility via hypothalamic circuit. This study investigated the correlation between changes of hypothalamic ghrelin system and GI motility dysfunction and anorexia in rats with chronic renal failure (CRF). METHODS: Sprague-Dawley (SD) rats (male/female 1:1, 180 ± 20 g) were randomly classified into a CRF group and control group (n = 8 per group). 5/6 nephrectomy was used to construct the CRF model. When plasma creatinine concentration (PCr) and blood urea nitrogen (BUN) in the CRF group were twice higher than the normal, food intake (g/24 h) and gastrointestinal interdigestive myoelectric complex (IMC) were detected. Then all rats were killed for assessment of the mRNA expression of ghrelin and growth hormone secretagogue receptor (GHS-R) in hypothalamus using reverse transcription-polymerase chain reaction. Analysis of variance, Student-Newman-Keuls-q-test and Correlation Analysis were used to do statistical analysis. P < 0.05 was considered as statistically significant. RESULTS: Compared to the control group, the CRF group was obviously decreased in the food intake (g/24 h), the phase III duration and amplitude and the ghrelin and GHS-R expression in the hypothalamus (P < 0.05). There was a positive correlation between them (P < 0.05). CONCLUSION: Changes of ghrelin and GHS-R in the hypothalamus correlate with gastrointestinal motility dysfunction and anorexia in rats with CRF.


Subject(s)
Anorexia/etiology , Gastrointestinal Diseases/etiology , Gastrointestinal Motility , Ghrelin/metabolism , Hypothalamus/metabolism , Kidney Failure, Chronic/complications , Uremia/etiology , Animals , Anorexia/genetics , Anorexia/metabolism , Anorexia/physiopathology , Biomarkers/blood , Blood Urea Nitrogen , Creatinine/blood , Disease Models, Animal , Eating , Female , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/physiopathology , Ghrelin/genetics , Hypothalamus/physiopathology , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/physiopathology , Male , Myoelectric Complex, Migrating , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Ghrelin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Uremia/genetics , Uremia/metabolism , Uremia/physiopathology
8.
Ren Fail ; 34(8): 1027-32, 2012.
Article in English | MEDLINE | ID: mdl-22880808

ABSTRACT

BACKGROUND/AIMS: Ghrelin plays a central role in the regulation of gastrointestinal (GI) motility. This study aimed to investigate the expression of ghrelin and growth hormone secretagogue receptor (GHSR) in the central nervous system of rats with chronic renal failure (CRF). METHODS: Sprague-Dawley rats (male, 180 ± 20 g, n = 24) were treated by 5/6 nephrectomy to construct CRF model. As their plasma creatinine concentration and blood urea nitrogen were maintained more than double the normal level for 2 weeks, they were killed for assessing the expression of ghrelin and GHSR in hypothalamus and hippocampus using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). The rats (male, 180 ± 20 g, n = 24) treated by Sham operation served as a control. One-way analysis of variance and Student-Newman-Keuls q test were used to analyze group difference and a p-value of <0.05 was considered as statistically significant. RESULTS: Compared with the controls, the ghrelin and GHSR expression was obviously increased in the hippocampus (p < 0.05) but decreased in the hypothalamus of rats with CRF (p < 0.05). CONCLUSIONS: CRF was found to impact the expression of ghrelin and GHSR in hypothalamus and hippocampus. This might be associated with the CRF-induced GI motility dysfunction.


Subject(s)
Ghrelin/metabolism , Hippocampus/metabolism , Hypothalamus/metabolism , Kidney Failure, Chronic/metabolism , Receptors, Ghrelin/metabolism , Animals , Gene Expression , Ghrelin/genetics , Immunohistochemistry , Male , RNA, Messenger/isolation & purification , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
9.
Cell Mol Neurobiol ; 29(3): 317-28, 2009 May.
Article in English | MEDLINE | ID: mdl-18975071

ABSTRACT

Recent evidences indicate the existence of an atypical D(1) dopamine receptor other than traditional D(1) dopamine receptor in the brain that mediates PI hydrolysis via activation of phospholipase C(beta) (PLC(beta)). To further understand the basic physiological function of this receptor in brain, the effects of a selective phosphoinositide (PI)-linked D(1) dopamine receptor agonist SKF83959 on cytosolic free calcium concentration ([Ca(2+)](i)) in cultured rat prefrontal cortical astrocytes were investigated by calcium imaging. The results indicated that SKF83959 caused a transient dose-dependent increase in [Ca(2+)](i). Application of D(1) receptor, but not D(2), alpha(1) adrenergic, 5-HT receptor, or cholinergic antagonist prevented SKF83959-induced [Ca(2+)](i) rise, indicating that activation of the D(1) dopamine receptor was essential for this response. Increase in [Ca(2+)](i) was a two-step process characterized by an initial increase in [Ca(2+)](i) mediated by release from intracellular stores, supplemented by influx through voltage-gated calcium channels, receptor-operated calcium channels, and capacitative Ca(2+) entry. Furthermore, SKF83959-stimulated increase in [Ca(2+)](i) was abolished following treatment with a PLC inhibitor. Overall, these results suggested that activation of D(1) receptor by SKF83959 mediates a dose-dependent mobilization of [Ca(2+)](i) via the PLC signaling pathway in cultured rat prefrontal cortical astrocytes.


Subject(s)
Astrocytes/metabolism , Calcium Signaling , Phosphatidylinositols/metabolism , Prefrontal Cortex/cytology , Receptors, Dopamine D1/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/enzymology , Calcium Channels/metabolism , Calcium Signaling/drug effects , Cells, Cultured , Enzyme Activation/drug effects , Extracellular Space/drug effects , Extracellular Space/metabolism , Female , Inositol 1,4,5-Trisphosphate/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL