Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Insect Physiol ; 52(1): 21-8, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16243350

ABSTRACT

A unique 33-kDa cysteine protease (Mir1-CP) rapidly accumulates at the feeding site in the whorls of maize (Zea mays L.) lines that are resistant to herbivory by Spodoptera frugiperda and other lepidopteran species. When larvae were reared on resistant plants, larval growth was reduced due to impaired nutrient utilization. Scanning electron microscopy (SEM) indicated that the peritrophic matrix (PM) was damaged when larvae fed on resistant plants or transgenic maize callus expressing Mir1-CP. To directly determine the effects of Mir1-CP on the PM in vitro, dissected PMs were treated with purified, recombinant Mir1-CP and the movement of Blue Dextran 2000 across the PM was measured. Mir1-CP completely permeabilized the PM and the time required to reach full permeability was inversely proportional to the concentration of Mir1-CP. Inclusion of E64, a specific cysteine protease inhibitor prevented the damage. The lumen side of the PM was more vulnerable to Mir1-CP attack than the epithelial side. Mir1-CP damaged the PM at pH values as high as 8.5 and more actively permeabilized the PM than equivalent concentrations of the cysteine proteases papain, bromelain and ficin. The effect of Mir1-CP on the PMs of Helicoverpa zea, Danaus plexippus, Ostrinia nubilalis, Periplaneta americana and Tenebrio molitor also was tested, but the greatest effect was on the S. frugiperda PM. These results demonstrate that the insect-inducible Mir1-CP directly damages the PM in vitro and is critical to insect defense in maize.


Subject(s)
Cysteine Endopeptidases/pharmacology , Spodoptera/drug effects , Zea mays/enzymology , Animals , Cysteine Endopeptidases/isolation & purification , Cysteine Endopeptidases/metabolism , Digestive System/drug effects , Hemolymph/chemistry , Hydrogen-Ion Concentration , Insecta/drug effects , Permeability/drug effects , Temperature
2.
Proc Natl Acad Sci U S A ; 95(26): 15287-92, 1998 Dec 22.
Article in English | MEDLINE | ID: mdl-9860961

ABSTRACT

Desaturation of coenzyme-A esters of saturated fatty acids is a common feature of sex pheromone biosynthetic pathways in the Lepidoptera. The enzymes that catalyze this step share several biochemical properties with the ubiquitous acyl-CoA Delta9-desaturases of animals and fungi, suggesting a common ancestral origin. Unlike metabolic acyl-CoA Delta9-desaturases, pheromone desaturases have evolved unusual regio- and stereoselective activities that contribute to the remarkable diversity of chemical structures used as pheromones in this large taxonomic group. In this report, we describe the isolation of a cDNA encoding a pheromone gland desaturase from the cabbage looper moth, Trichoplusia ni, a species in which all unsaturated pheromone products are produced via a Delta11Z-desaturation mechanism. The largest ORF of the approximately 1,250-bp cDNA encodes a 349-aa apoprotein (PDesat-Tn Delta11Z) with a predicted molecular mass of 40,240 Da. Its hydrophobicity profile is similar overall to those of rat and yeast Delta9-desaturases, suggesting conserved transmembrane topology. A 182-aa core domain delimited by conserved histidine-rich motifs implicated in iron-binding and catalysis has 72 and 58% similarity (including conservative substitutions) to acyl-CoA Delta9Z-desaturases of rat and yeast, respectively. Northern blot analysis revealed an approximately 1,250-nt PDesat-Tn Delta11Z mRNA that is consistent with the spatial and temporal distribution of Delta11-desaturase enzyme activity. Genetic transformation of a desaturase-deficient strain of the yeast Saccharomyces cerevisiae with an expression plasmid encoding PDesat-Tn Delta11Z resulted in complementation of the strain's fatty acid auxotrophy and the production of Delta11Z-unsaturated fatty acids.


Subject(s)
Fatty Acid Desaturases/genetics , Moths/enzymology , Amino Acid Sequence , Animals , Cloning, Molecular , Conserved Sequence , DNA, Complementary , Endocrine Glands/enzymology , Fatty Acid Desaturases/biosynthesis , Fatty Acid Desaturases/chemistry , Genes, Insect , Molecular Sequence Data , Molecular Weight , Moths/genetics , Open Reading Frames , Pheromones/metabolism , Rats , Saccharomyces cerevisiae/enzymology , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL