Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 609: 1093-1102, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28787783

ABSTRACT

Mining activity is an increasingly important stressor for freshwater ecosystems. However, the mechanism on how sulfate-rich mine drainage affects freshwater ecosystems is largely unknown, and its potential ecological risk has not been assessed so far. During 2009-2016, water and macroinvertebrate samples from 405 sample sites were collected along the mine drainage gradient from circum-neutral to alkaline waters in Hun-Tai River, Northeastern China. Results of linear regressions showed that sulfate-rich mine drainage was significantly positively correlated with the constituents typically derived from rock weathering (Ca2+, Mg2+ and HCO3-+CO32-); the diversity of intolerant stream macroinvertebrates exhibited a steep decline along the gradient of sulfate-rich mine drainage. Meanwhile, stressor-response relationships between sulfate-rich mine drainage and macroinvertebrate communities were explored by two complementary statistical approaches in tandem (Threshold Indicator Taxa Analysis and the field-based method developed by USEPA). Results revealed that once stream sulfate concentrations in mine drainage exceeded 35mg/L, significant decline in the abundance of intolerant macroinvertebrate taxa occurred. An assessment of ecological risk posed by sulfate-rich mine drainage was conducted based on a tiered approach consisting of simple deterministic method (Hazard Quotient, HQ) to probabilistic method (Joint Probability Curve, JPC). Results indicated that sulfate-rich mine drainage posed a potential risk, and 64.62-84.88% of surface waters in Hun-Tai River exist serious risk while 5% threshold (HC05) and 1% threshold (HC01) were set up to protect macroinvertebrates, respectively. This study provided us a better understanding on the impacts of sulfate-rich mine drainage on freshwater ecosystems, and it would be helpful for future catchment management to protect streams from mining activity.


Subject(s)
Ecosystem , Mining , Rivers/chemistry , Sulfates/adverse effects , Water Pollutants, Chemical/adverse effects , Animals , China , Environmental Monitoring , Invertebrates
2.
Environ Monit Assess ; 189(3): 97, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28168526

ABSTRACT

Specific conductivity is an increasingly important stressor for freshwater ecosystems. Interacting with other environmental factors, it may lead to habitat degradation and biodiversity loss. However, it is still poorly understood how the effect of specific conductivity on freshwater organisms is confounded by other environmental factors. In this study, a weight-of-evidence method was applied to evaluate the potential environmental factors that may confound the effect of specific conductivity on macroinvertebrate structure communities and identify the confounders affecting deriving conductivity benchmark in Hun-Tai River Basin, China. A total of seven potential environmental factors were assessed by six types of evidence (i.e., correlation of cause and confounder, correlation of effect and confounder, the contingency of high level cause and confounder, the removal of confounder, levels of confounder known to cause effects, and multivariate statistics for confounding). Results showed that effects of dissolved oxygen (DO), fecal coliform, habitat score, total phosphorus (TP), pH, and temperature on the relationship between sensitive genera loss and specific conductivity were minimal and manageable. NH3-N was identified as a confounder affecting deriving conductivity benchmark for macroinvertebrate. The potential confounding by high NH3-N was minimized by removing sites with NH3-N > 2.0 mg/L from the data set. Our study tailored the weighting method previously developed by USEPA to use field data to develop causal relationships for basin-scale applications and may provide useful information for pollution remediation and natural resource management.


Subject(s)
Environmental Monitoring/methods , Nitrogen/analysis , Rivers/chemistry , Aquatic Organisms , Biodiversity , China , Conservation of Natural Resources , Ecosystem , Feces , Hydrogen-Ion Concentration , Phosphorus/analysis , Temperature , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL