Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Environ Microbiol Rep ; 16(2): e13248, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581137

ABSTRACT

Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.


Subject(s)
Desulfovibrio , Petroleum , Nitrates , Sulfates , Water , RNA, Ribosomal, 16S/genetics , Bacteria , Desulfovibrio/genetics , Organic Chemicals , Sulfur , Oxidation-Reduction
2.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38059862

ABSTRACT

AIMS: Microbial enhanced oil recovery (MEOR) is dedicated to enhancing oil recovery by harnessing microbial metabolic activities and their byproducts within reservoir rocks and fluids. Therefore, the investigation of microbial mobility and their extensive distribution within crude oil is of paramount importance in MEOR. While microscale models have been valuable for studying bacterial strain behavior in reservoirs, they are typically limited to 2D representations of porous media, making them inadequate for simulating actual reservoir conditions. Consequently, there is a critical need for 3D models and dependable visualization methods to observe bacterial transport and metabolism within these complex reservoir environments. METHODS AND RESULTS: Bacterial cellulose (bc) is a water-insoluble polysaccharide produced by bacteria that exhibits biocompatibility and biodegradability. It holds significant potential for applications in the field of MEOR as an effective means for selective plugging and spill prevention during oil displacement processes. Conditionally cellulose-producing strain, FY-07-G, with green fluorescent labeling, was engineered for enhanced oil recovery. 3D micro-visualization model was constructed to directly observe the metabolic activities of the target bacterial strain within porous media and to assess the plugging interactions between cellulose and the medium. Additionally, X-ray computed tomography (X-CT) technology was employed for a comprehensive analysis of the transport patterns of the target strain in oil reservoirs with varying permeabilities. The results indicated that FY-07-G, as a microorganism employing biopolymer-based plugging principles to enhance oil recovery, selectively targets and seals regions characterized by lower permeability and smaller pore spaces. CONCLUSIONS: This work provided valuable insights into the transport and metabolic behavior of MEOR strains and tackled the limitation of 2D models in faithfully replicating oil reservoir conditions, offering essential theoretical guidance and insights for the further application of oil-displacing bacterial strains in MEOR processes.


Subject(s)
Petroleum , Petroleum/metabolism , Bacteria/metabolism , Oil and Gas Fields , Cellulose/metabolism , Tomography, X-Ray Computed
3.
J Nanobiotechnology ; 21(1): 391, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37884969

ABSTRACT

Depression is a severe mental disorder among public health issues. Researchers in the field of mental health and clinical psychiatrists have long been faced with difficulties in slow treatment cycles, high recurrence rates, and lagging efficacy. These obstacles have forced us to seek more advanced and effective treatments. Research has shown that novel drug delivery strategies for natural medicinal plants can effectively improve the utilization efficiency of the active molecules in these plants and therefore improve their efficacy. Currently, with the development of treatment technologies and the constant updating of novel drug delivery strategies, the addition of natural medicinal antidepressant therapy has given new significance to the study of depression treatment against the background of novel drug delivery systems. Based on this, this review comprehensively evaluates and analyses the research progress in novel drug delivery systems, including nanodrug delivery technology, in intervention research strategies for neurological diseases from the perspective of natural medicines for depression treatment. This provided a new theoretical foundation for the development and application of novel drug delivery strategies and drug delivery technologies in basic and clinical drug research fields.


Subject(s)
Plants, Medicinal , Humans , Drug Delivery Systems , Antidepressive Agents/therapeutic use
4.
Phytomedicine ; 121: 155102, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37748389

ABSTRACT

BACKGROUND: Lilium henryi Baker (Liliaceae) and Rehmannia glutinosa (Gaertn.) DC. (Plantaginaceae) were the traditional natural medicinal plants for the treatment of depression, but the antidepression mechanism of two plants co-decoction (Also known as Lily bulb and Rehmannia decoction (LBRD) drug-containing serum (LBRDDS) has not been elucidated in the in vitro model of depression. MATERIAL AND METHODS: Here, UHPLC-Q-TOF/MS was used to identify the active components of LBRDDS and the potential effector substance was identified by bioinformatics analysis. CORT-induced nerve cells cytotoxicity was used to investigate the neuroprotection effect of LBRDDS and the underlying pharmacological mechanisms were explored by multiple experimental methods such as molecular docking, immunofluorescence, gain- or loss-of function experiments. RESULTS: Bioactive compounds in LBRDDS absorbed from intestinal tract were transformed or metabolized by the gut microbiota including palmitic acid, adrenic acid, linoleic acid, arachidonic acid and docosapentaenoic acid. Network pharmacology analysis and molecular docking of showed fatty acid metabolism, neurotransmitter synthesis and neuroinflammation may be potential therapeutic targets of LBRDDS. LBRDDS can improve the activity of model cells, reduce cytotoxicity of lactate dehydrogenase, recover neurotransmitter imbalance, relieve inflammatory damage, down-regulate the expression of miRNA-144-3p, increase the mRNAs and protein expression level of Gad-67 and VGAT, and promote the synthesis and transport of GABA. CONCLUSION: Therefore, LBRDDS exerts neuroprotective effects by correcting neurotransmitter deficits and inflammation imbalance in the CORT-induced nerve cell injury model.


Subject(s)
Drugs, Chinese Herbal , Neuroprotective Agents , Plants, Medicinal , Neuroprotective Agents/pharmacology , Molecular Docking Simulation , Inflammation/chemically induced , Inflammation/drug therapy , Neurons , Drugs, Chinese Herbal/pharmacology
5.
Clin Adv Hematol Oncol ; 21(9): 494-501, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37647496

ABSTRACT

There are numerous radiation modalities for the definitive treatment of localized prostate cancer. Classic clinical trials have established the basic tenets of treatment approaches, and emerging data have generated new potential avenues of treatment that optimize the therapeutic ratio by increasing prostate cancer tumor control while minimizing treatment-related toxicity. In the definitive setting, the selection of the optimal radiation therapy approach depends largely on the appropriate up-front risk stratification of men with prostate cancer, with greater intensification of treatment and greater integration of multimodality therapies for men with higher-risk disease. Hormonal therapy should be selectively deployed based on prognostic information derived from the National Comprehensive Cancer Network risk group and biologic tumor aggressiveness informed by genomic classifiers. Moreover, treatment intensification and target volume delineation are increasingly informed by molecular imaging and multiparametric magnetic resonance imaging. Herein, we perform a critical appraisal of the literature focusing on the optimal selection of radiation therapy modality for localized prostate cancer. Collaboration among medical oncologists, surgeons, and radiation oncologists will be critical for coordinating evidence-based radiation therapies when clearly indicated and for supporting shared decision-making when the evidence is incomplete.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/radiotherapy , Prostate , Combined Modality Therapy , Genomics , Molecular Imaging
6.
Sci Bull (Beijing) ; 68(14): 1556-1566, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37391345

ABSTRACT

Over decades, nearly all attempts to translate the benefits of therapeutic hypothermia in stroke models of lower-order species to stroke patients have failed. Potentially overlooked reasons may be biological gaps between different species and the mismatched initiation of therapeutic hypothermia in translational studies. Here, we introduce a novel strategy of selective therapeutic hypothermia in a non-human primate ischemia-reperfusion model, in which autologous blood was cooled ex vivo and the cool blood transfusion was administered at the middle cerebral artery just after the onset of reperfusion. Cold autologous blood cooled the targeted brain rapidly to below 34 °C while the rectal temperature remained around 36 °C with the assistance of a heat blanket during a 2-h hypothermic process. Therapeutic hypothermia or extracorporeal-circulation related complications were not observed. Cold autologous blood treatment reduced infarct sizes, preserved white matter integrity, and improved functional outcomes. Together, our results suggest that therapeutic hypothermia, induced by cold autologous blood transfusion, was achieved in a feasible, swift, and safe way in a non-human primate model of stroke. More importantly, this novel hypothermic approach conferred neuroprotection in a clinically relevant model of ischemic stroke due to reduced brain damage and improved neurofunction. This study reveals an underappreciated potential for this novel hypothermic modality for acute ischemic stroke in the era of effective reperfusion.

7.
Int Immunopharmacol ; 121: 110438, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295026

ABSTRACT

Osteoarthritis is a multifactorial disease characterized by cartilage degeneration, while cartilage progenitor/stem cells (CPCs) are responsible for endogenous cartilage repair. However, the relevant regulatory mechanisms of CPCs fate reprogramming in OA are rarely reported. Recently, we observed fate disorders in OA CPCs and found that microRNA-140-5p (miR-140-5p) protects CPCs from fate changes in OA. This study further mechanistically investigated the upstream regulator and downstream effectors of miR-140-5p in OA CPCs fate reprogramming. As a result, luciferase reporter assay and validation assays revealed that miR-140-5p targets Jagged1 and inhibits Notch signaling in human CPCs, and the loss-/gain-of-function experiments and rescue assays discovered that miR-140-5p improves OA CPCs fate, but this effect can be counteracted by Jagged1. Moreover, increased transcription factor Ying Yang 1 (YY1) was associated with OA progression, and YY1 could disturb CPCs fate via transcriptionally repressing miR-140-5p and enhancing the Jagged1/Notch signaling. Finally, the relevant changes and mechanisms of YY1, miR-140-5p, and Jagged1/Notch signaling in OA CPCs fate reprogramming were validated in rats. Conclusively, this study identified a novel YY1/miR-140-5p/Jagged1/Notch signaling axis that mediates OA CPCs fate reprogramming, wherein YY1 and Jagged1/Notch signaling exhibits an OA-stimulative role, and miR-140-5p plays an OA-protective effect, providing attractive targets for OA therapeutics.


Subject(s)
MicroRNAs , Osteoarthritis, Knee , Humans , Rats , Animals , Cartilage , Chondrocytes , Stem Cells , Apoptosis , YY1 Transcription Factor
8.
Microbiome ; 11(1): 107, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37194043

ABSTRACT

BACKGROUND: The lithospheric microbiome plays a vital role in global biogeochemical cycling, yet their mutual modulation mechanisms remain largely uncharted. Petroleum reservoirs are important lithosphere ecosystems that provide desirable resources for understanding microbial roles in element cycling. However, the strategy and mechanism of modulating indigenous microbial communities for the optimization of community structures and functions are underexplored, despite its significance in energy recovery and environmental remediation. RESULTS: Here we proposed a novel selective stimulation of indigenous functional microbes by driving nitrogen and sulfur cycling in petroleum reservoirs using injections of an exogenous heterocycle-degrading strain of Pseudomonas. We defined such bacteria capable of removing and releasing organically bound sulfur and nitrogen from heterocycles as "bioredox triggers". High-throughput 16S rRNA amplicon sequencing, metagenomic, and gene transcription-level analyses of extensive production water and sandstone core samples spanning the whole oil production process clarified the microbiome dynamics following the intervention. These efforts demonstrated the feasibility of in situ N/S element release and electron acceptor generation during heterocycle degradation, shifting microbiome structures and functions and increasing phylogenetic diversity and genera engaged in sulfur and nitrogen cycling, such as Desulfovibrio, Shewanella, and Sulfurospirillum. The metabolic potentials of sulfur- and nitrogen-cycling processes, particularly dissimilatory sulfate reduction and dissimilatory nitrate reduction, were elevated in reservoir microbiomes. The relative expression of genes involved in sulfate reduction (dsrA, dsrB) and nitrate reduction (napA) was upregulated by 85, 28, and 22 folds, respectively. Field trials showed significant improvements in oil properties, with a decline in asphaltenes and aromatics, hetero-element contents, and viscosity, hence facilitating the effective exploitation of heavy oil. CONCLUSIONS: The interactions between microbiomes and element cycling elucidated in this study will contribute to a better understanding of microbial metabolic involvement in, and response to, biogeochemical processes in the lithosphere. The presented findings demonstrated the immense potential of our microbial modulation strategy for green and enhanced heavy oil recovery. Video Abstract.


Subject(s)
Microbiota , Petroleum , Nitrates/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Petroleum/metabolism , Petroleum/microbiology , Sulfur/metabolism , Nitrogen/metabolism , Sulfates
9.
Int J Biol Macromol ; 239: 124329, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37019196

ABSTRACT

In situ modification is commonly employed for Bacterial cellulose (BC) functionalization. However, water-insoluble modifiers are usually deposited at the bottom of the medium, therefore cannot be used for in situ modification of BC. Herein, a novel strategy for in situ modification of insoluble modifiers after suspension by a suspending agent was proposed. The BC-producing strain Kosakonia oryzendophytica FY-07, not Gluconacetobacter xylinus, was selected to prepare BC products with antibacterial activity because of its tolerance to natural antibacterial products. The experimental results showed that xanthan gum as a suspending agent can uniformly and stably disperse water-insoluble plant extracts magnolol in the culture medium to prepare the in situ modified BC products. Characterization of the properties showed that the in situ modified BC products have reduced crystallinity, significantly increased swelling ratio and strong inhibition on Gram-positive bacteria and fungi and weak inhibition on Gram-negative bacteria. Furthermore, the in situ modified BC products had no toxicity to cells. This study provided a feasible strategy for in situ modification of BC using water-insoluble modifiers to extend BC functionality and has significant implications for the biopolymer industry.


Subject(s)
Anti-Infective Agents , Water , Excipients , Cellulose/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology
10.
Heliyon ; 9(3): e14570, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967897

ABSTRACT

Licorice (Glycyrrhiza uralensis Fisch. (GUF), Leguminosae) has been extensively applied in traditional Chinese medicine (TCM) to treat diseases, exactly, in almost half of Chinese herbal prescription. However, the relationship between chemical contents and efficacy has not been established, which could evaluate GUF quality. To create a simple and effective quality-evaluation method, 33 batches of GUF from different habitats in China were collected. The correlation between eight constituents (liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin, glycyrrhizic acid, licochalcone A, glabridin and glycyrrhetinic acid) and pharmacological activities (anti-inflammatory, antioxidant and immunoregulatory) was analyzed per the partial least squares regression method. Results showed that eight constituents correlated significantly with the pharmacological activity. The correlation equation modes between pharmacological activity and contents of eight constituents were constructed and verified to be reliable. In GUF extract, the main constituents liquiritin, isoliquiritin and glycyrrhizic acid exhibited positive influence on anti-inflammatory and antioxidant effect with different potent, while the metabolites liquiritigenin and isoliquiritigenin exhibited positive effect on the immunoregulatory activity and glycyrrhetinic acid exhibited positive effect on all the tested activities. Thus, our chemical-efficacy correlation method is reliable and feasible to predict the pharmacological activity based on its eight constituents. It could be powerful in quality control of GUF and provides a useful way for quality evaluation of other medicinal herbs.

11.
Br J Nutr ; 130(7): 1239-1249, 2023 10 14.
Article in English | MEDLINE | ID: mdl-36746393

ABSTRACT

Circulating n-3 PUFA, which integrate endogenous and exogenous n-3 PUFA, can be better used to investigate the relationship between n-3 PUFA and disease. However, studies examining the associations between circulating n-3 PUFA and colorectal cancer (CRC) risk were limited, and the results remained inconclusive. This case­control study aimed to examine the association between serum n-3 PUFA and CRC risk in Chinese population. A total of 680 CRC cases and 680 sex- and age-matched (5-year interval) controls were included. Fatty acids were assayed by GC. OR and 95 % CI were calculated using multivariable logistic regression after adjustment for potential confounders. Higher level of serum α-linolenic acid (ALA), docosapentaenoic acid (DPA), DHA, long-chain n-3 PUFA and total n-3 PUFA were associated with lower odds of CRC. The adjusted OR and 95 % CI were 0·34 (0·24, 0·49, Pfor trend < 0·001) for ALA, 0·57 (0·40, 0·80, Pfor trend < 0·001) for DPA, 0·48 (0·34, 0·68, Pfor trend < 0·001) for DHA, 0·39 (0·27, 0·56, Pfor trend < 0·001) for long-chain n-3 PUFA and 0·31 (0·22, 0·45, Pfor trend < 0·001) for total n-3 PUFA comparing the highest with the lowest quartile. However, there was no statistically significant association between EPA and odds of CRC. Analysis stratified by sex showed that ALA, DHA, long-chain n-3 PUFA and total n-3 PUFA were inversely associated with odds of CRC in both sexes. This study indicated that serum ALA, DPA, DHA, long-chain n-3 PUFA and total n-3 PUFA were inversely associated with odds of having CRC in Chinese population.


Subject(s)
Colorectal Neoplasms , Fatty Acids, Omega-3 , Female , Humans , Male , Case-Control Studies , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/prevention & control , East Asian People , Fatty Acids , Fatty Acids, Omega-3/blood
12.
Chem Biodivers ; 20(3): e202201110, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36825591

ABSTRACT

Hepatic fibrosis is a global health problem, which currently has no FDA approved antifibrotic therapy yet. This study aimed to explore the mechanism of Hovenia genus in the treatment of hepatic fibrosis by an integrative strategy combining network pharmacology analysis, molecular docking, transcriptomics and experimental validation. The traditional Chinese medicine systems pharmacology (TCMSP) database and literatures were used to collect the components of Hovenia genus. Public databases including GeneCards, TTD, PharmGkb were used to acquire the putative targets. The GO and KEGG analysis were applied to explore the underlying mechanisms. Furthermore, The TGF-ß1 induced hepatic stellate cells (HSCs) model were performed to evaluate the anti-hepatic fibrosis activity of Hovenia genus. The RT-qPCR, Western blotting and flow cytometry experiments were used to validate the anti-hepatic fibrosis mechanisms of Hovenianin A. The KEGG analysis of network pharmacology and transcriptomics revealed that the core targets mainly enriched in PI3K-Akt signaling pathways. The cell screening results indicated flavonoids were the main active ingredients of Hovenia. Hovenianin A, a bioactive bisflavonol, was validated to promote the apoptosis of HSCs by inhibiting PI3K-Akt pathway. Molecular docking further corroborated the binding sites between Hovenianin A and AKT1. In summary, Hovenia may have therapeutic effects on liver fibrosis by modulating the PI3K-Akt apoptosis pathway. Our findings may facilitate the development of Hovenia genus, which could help to treat liver fibrosis in the future.


Subject(s)
Drugs, Chinese Herbal , Rhamnaceae , Transforming Growth Factor beta1/pharmacology , Hepatic Stellate Cells , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Transcriptome , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Drugs, Chinese Herbal/pharmacology
13.
Environ Res ; 224: 115541, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36828250

ABSTRACT

Heterocyclic hydrocarbons pollution generated by oil spills and oilfield wastewater discharges threatens the ecological environment and human health. Here we described a strategy that combines the greenhouse gas CO2 reduction with microbial remediation. In the presence of nitrate, CO2 can improve the biodegradation efficiency of the resins and asphaltenes in heavy oil, particularly the biodegradation selectivity of the polar heterocyclic compounds by the newly isolated Klebsiella michiganensis. This strain encoded 80 genes for the xenobiotic biodegradation and metabolism, and can efficiently utilize CO2 when degrading heavy oil. The total abundance of resins and asphaltenes decreased significantly with CO2, from 40.816% to 26.909%, to 28.873% with O2, and to 36.985% with N2. The transcripts per million (TPM) value of accA gene was 57.81 under CO2 condition, while respectively 8.86 and 21.23 under O2 and N2 conditions. Under CO2 condition, the total relative percentage of N1-type heterocyclic compounds was selectively decreased from 32.25% to 22.78%, resulting in the heavy oil viscosity decreased by 46.29%. These results demonstrated a novel anaerobic degradation mechanism that CO2 can promote the anaerobic biodegradation of heterocyclic hydrocarbons in heavy oil, which provides a promising biotreatment technology for the oil-contaminated water.


Subject(s)
Petroleum Pollution , Petroleum , Humans , Petroleum/metabolism , Carbon Dioxide , Anaerobiosis , Hydrocarbons , Oil and Gas Fields , Biodegradation, Environmental
14.
Int J Radiat Oncol Biol Phys ; 115(3): 645-653, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36179990

ABSTRACT

PURPOSE: Very-high-risk (VHR) prostate cancer (PC) is an aggressive subgroup with high risk of distant disease progression. Systemic treatment intensification with abiraterone or docetaxel reduces PC-specific mortality (PCSM) and distant metastasis (DM) in men receiving external beam radiation therapy (EBRT) with androgen deprivation therapy (ADT). Whether prostate-directed treatment intensification with the addition of brachytherapy (BT) boost to EBRT with ADT improves outcomes in this group is unclear. METHODS AND MATERIALS: This cohort study from 16 centers across 4 countries included men with VHR PC treated with either dose-escalated EBRT with ≥24 months of ADT or EBRT + BT boost with ≥12 months of ADT. VHR was defined by National Comprehensive Cancer Network (NCCN) criteria (clinical T3b-4, primary Gleason pattern 5, or ≥2 NCCN high-risk features), and results were corroborated in a subgroup of men who met Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy (STAMPEDE) trials inclusion criteria (≥2 of the following: clinical T3-4, Gleason 8-10, or PSA ≥40 ng/mL). PCSM and DM between EBRT and EBRT + BT were compared using inverse probability of treatment weight-adjusted Fine-Gray competing risk regression. RESULTS: Among the entire cohort, 270 underwent EBRT and 101 EBRT + BT. After a median follow-up of 7.8 years, 6.7% and 5.9% of men died of PC and 16.3% and 9.9% had DM after EBRT and EBRT + BT, respectively. There was no significant difference in PCSM (sHR, 1.47 [95% CI, 0.57-3.75]; P = .42) or DM (sHR, 0.72, [95% CI, 0.30-1.71]; P = .45) between EBRT + BT and EBRT. Results were similar within the STAMPEDE-defined VHR subgroup (PCSM: sHR, 1.67 [95% CI, 0.48-5.81]; P = .42; DM: sHR, 0.56 [95% CI, 0.15-2.04]; P = .38). CONCLUSIONS: In this VHR PC cohort, no difference in clinically meaningful outcomes was observed between EBRT alone with ≥24 months of ADT compared with EBRT + BT with ≥12 months of ADT. Comparative analyses in men treated with intensified systemic therapy are warranted.


Subject(s)
Brachytherapy , Prostatic Neoplasms , Male , Humans , Brachytherapy/methods , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Cohort Studies , Androgen Antagonists/therapeutic use , Neoplasm Grading , Retrospective Studies
15.
Nutrients ; 14(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36297059

ABSTRACT

Associations of dietary fatty acids with the risk of colorectal cancer (CRC) remain controversial. The objective of this study was to examine whether dietary-derived fatty acid patterns were related to CRC risk among Chinese people. A total of 2806 CRC patients and 2806 frequency-matched controls were interviewed in this case-control study between July 2010 and May 2021. A food frequency questionnaire was used to gather information on dietary intake. Four fatty acid patterns were identified using factor analysis. The even-long-chain fatty acid pattern had no statistically significant association with CRC risk (adjusted Odds ratio (aOR), 1.16; 95% confidence interval (CI), 0.97-1.39; ptrend = 0.129). However, significant inverse associations were found between the medium-chain and long-chain saturated fatty acid (SFA) pattern (aOR, 0.34; 95%CI, 0.27-0.42), the highly unsaturated fatty acid pattern (aOR, 0.73; 95%CI, 0.60-0.88), the odd-chain fatty acid pattern (aOR, 0.69; 95%CI, 0.57-0.83), and CRC risk. The interaction between fatty acid patterns and sex was observed, and the association between the highly unsaturated fatty acid pattern and CRC risk differed by subsite. In conclusion, increasing the intakes of foods rich in medium-chain SFAs, highly unsaturated fatty acids, and odd-chain fatty acids may be related to a lower risk of CRC.


Subject(s)
Colorectal Neoplasms , Dietary Fats , Humans , Case-Control Studies , Dietary Fats/adverse effects , Risk Factors , Fatty Acids/adverse effects , Fatty Acids, Unsaturated , China/epidemiology , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/prevention & control
16.
Appl Environ Microbiol ; 88(20): e0129422, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36169310

ABSTRACT

Due to the barrier effect of lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria, transporters are required for hydrophobic alkane uptake. However, there are few reports on long-chain alkane transporters. In this study, a potential long-chain alkane transporter (AltL) was screened in Acinetobacter venetianus RAG-1 by comparative transcriptome analysis. Growth and degradation experiments showed that altL deletion led to the loss of n-octacosane utilization capacity of RAG-1. To identify the function of AltL, we measured the existence and accumulation of alkanes in cells through the constructed alkane detection system and isotope transport experiment, which proved its long-chain alkane transport function. Growth experiments using different chain-length n-alkanes and fatty acids as substrates showed that AltL was responsible for the transport of (very) long-chain n-alkanes (C20 to C38) and fatty acids (C18A to C28A) and was also involved in the uptake of medium-chain n-alkanes (C16 to C18). Subsequently, we analyzed the distribution of AltL in bacteria, and found that AltL homologs are widespread in Gamma-, Beta-, and Deltaproteobacteria. An AltL homolog in Pseudomonas aeruginosa was also identified to participate in long-chain alkane transport by a gene deletion and growth assay. We also found that overexpression of altL in Pseudomonas aeruginosa enhanced the degradation of C16 to C32 n-alkanes. In addition, structure analysis showed that AltL has longer extracellular loops than other FadL family members, which may be involved in the binding of alkanes. These results showed that AltL is a novel transporter and that it is mainly responsible for the transport of long-chain n-alkanes and (very) long-chain fatty acids and has broad application potential. IMPORTANCE Petroleum pollution has caused great harm to the natural environment, and alkanes are the main components of petroleum. Many Gram-negative bacteria can use alkanes as carbon and energy sources, which is an important strategy for oil pollution remediation. Alkane uptake is the first step for its utilization. Hence, the characterization of transport proteins is of great significance for the recovery of oil pollution and other potential applications in industrial engineering bacteria. At present, some short- and medium-chain alkane transporters have been identified, but stronger hydrophobic long-chain alkane transporters have received little attention. In this study, the broad-spectrum transporter AltL, identified in RAG-1, makes up for the lack of research on the transport of long-chain alkanes and (very) long-chain fatty acids. Meanwhile, the structural features of longer extracellular loops might be related to its unique transport function on more hydrophobic and larger substrates, indicating it is a novel type alkane transporter.


Subject(s)
Lipopolysaccharides , Petroleum , Lipopolysaccharides/metabolism , Fatty Acids/metabolism , Biodegradation, Environmental , Alkanes/metabolism , Petroleum/metabolism , Membrane Transport Proteins/metabolism , Pseudomonas aeruginosa/genetics , Bacteria/metabolism , Carbon/metabolism
17.
Eur Urol ; 82(5): 487-498, 2022 11.
Article in English | MEDLINE | ID: mdl-35934601

ABSTRACT

CONTEXT: The prognostic importance of local failure after definitive radiotherapy (RT) in National Comprehensive Cancer Network intermediate- and high-risk prostate cancer (PCa) patients remains unclear. OBJECTIVE: To evaluate the prognostic impact of local failure and the kinetics of distant metastasis following RT. EVIDENCE ACQUISITION: A pooled analysis was performed on individual patient data of 12 533 PCa (6288 high-risk and 6245 intermediate-risk) patients enrolled in 18 randomized trials (conducted between 1985 and 2015) within the Meta-analysis of Randomized Trials in Cancer of the Prostate Consortium. Multivariable Cox proportional hazard (PH) models were developed to evaluate the relationship between overall survival (OS), PCa-specific survival (PCSS), distant metastasis-free survival (DMFS), and local failure as a time-dependent covariate. Markov PH models were developed to evaluate the impact of specific transition states. EVIDENCE SYNTHESIS: The median follow-up was 11 yr. There were 795 (13%) local failure events and 1288 (21%) distant metastases for high-risk patients and 449 (7.2%) and 451 (7.2%) for intermediate-risk patients, respectively. For both groups, 81% of distant metastases developed from a clinically relapse-free state (cRF state). Local failure was significantly associated with OS (hazard ratio [HR] 1.17, 95% confidence interval [CI] 1.06-1.30), PCSS (HR 2.02, 95% CI 1.75-2.33), and DMFS (HR 1.94, 95% CI 1.75-2.15, p < 0.01 for all) in high-risk patients. Local failure was also significantly associated with DMFS (HR 1.57, 95% CI 1.36-1.81) but not with OS in intermediate-risk patients. Patients without local failure had a significantly lower HR of transitioning to a PCa-specific death state than those who had local failure (HR 0.32, 95% CI 0.21-0.50, p < 0.001). At later time points, more distant metastases emerged after a local failure event for both groups. CONCLUSIONS: Local failure is an independent prognosticator of OS, PCSS, and DMFS in high-risk and of DMFS in intermediate-risk PCa. Distant metastasis predominantly developed from the cRF state, underscoring the importance of addressing occult microscopic disease. However a "second wave" of distant metastases occurs subsequent to local failure events, and optimization of local control may reduce the risk of distant metastasis. PATIENT SUMMARY: Among men receiving definitive radiation therapy for high- and intermediate-risk prostate cancer, about 10% experience local recurrence, and they are at significantly increased risks of further disease progression. About 80% of patients who develop distant metastasis do not have a detectable local recurrence preceding it.


Subject(s)
Neoplasm Recurrence, Local , Prostatic Neoplasms , Humans , Male , Neoplasm Recurrence, Local/pathology , Proportional Hazards Models , Prostate-Specific Antigen , Prostatic Neoplasms/pathology , Randomized Controlled Trials as Topic , Retrospective Studies
18.
J Formos Med Assoc ; 121(12): 2465-2480, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35623930

ABSTRACT

BACKGROUND/PURPOSE: Specific immunotherapy is the only effective etiological treatment for allergic rhinitis, but subcutaneous immunotherapy has a slow onset and poor compliance. Predicting the clinical efficacy of subcutaneous immunotherapy in advance can reduce unnecessary medical costs and resource waste. This study aimed to identify metabolites that could predict the efficacy of subcutaneous immunotherapy on seasonal allergic rhinitis by serum metabolomics. METHODS: Patients (n = 43) with Artemisia sieversiana pollen allergic rhinitis were enrolled and treated with subcutaneous immunotherapy for one year. Patients were divided into the ineffective group (n = 10) and effective group (n = 33) according to the therapeutic index. Serum samples were collected before treatment. Metabolomics was determined by liquid chromatography-mass spectrometry combined with gas chromatography-mass spectrometry and analyzed differential compounds and related metabolic pathways. RESULTS: A total of 129 differential metabolites (P < 0.05) were identified and 4 metabolic pathways, namely taurine and hypotaurine metabolism, pentose and glucuronate interconversions, pentose phosphate pathway, and alanine, aspartate, and glutamate metabolism, were involved. CONCLUSION: Some metabolites, such as hypotaurine, taurine, and l-alanine, have the potential to become predictive biomarkers for effective subcutaneous immunotherapy.


Subject(s)
Artemisia , Rhinitis, Allergic , Humans , Allergens , Pollen/adverse effects , Rhinitis, Allergic/therapy , Rhinitis, Allergic/etiology , Taurine , Metabolomics , Immunotherapy , Treatment Outcome , Desensitization, Immunologic/adverse effects
19.
Am J Chin Med ; 50(3): 691-721, 2022.
Article in English | MEDLINE | ID: mdl-35282804

ABSTRACT

Pogostemonis Herba (PH) is the dried aerial parts of Pogostemon cablin (Blanco) Benth, which is mainly distributed and used in Asian countries. PH is an aromatic damp-resolving drug in traditional Chinese medicine (TCM), which is usually used for the treatment of vomiting, chest tension, tiredness, abdominal pain, diarrhea, and headache. In this review, the summary of chemical constituents in the aerial parts, biological activities, history of uses, quality control methods, industrial applications, pharmacokinetics and network pharmacology are reported. By collating the chemical constituents of various parts of PH, a total of 174 components were identified, including 66 terpenes, 6 pyrones, 40 flavonoids, 21 phenylpropanoids, 9 steroids, 4 polysaccharides and 28 others. Pharmacological research has found that PH possesses multi-pharmacological activities, including regulating the gastrointestinal tract, inhibition of pathogenic microorganisms, and anti-inflammation, which provide more scientific interpretation for the clinical usage of PH. In addition, the shortcomings of the current research on PH and the recommendation of future studies on PH are analyzed. We hope this review can provide some insight for further research and applications of PH in future.


Subject(s)
Pogostemon , Flavonoids , Network Pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Quality Control , Terpenes
20.
Microb Pathog ; 164: 105441, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35150870

ABSTRACT

Potato (Solanum tuberosum L.) is regarded as the fourth most important food crop because of its economic and nutritional benefits. This crop suffers significant annual losses due to a variety of phytopathogens. Bacterial soft rot disease is one of the most serious diseases that cause significant losses in potato yield all over the world. Therefore, identification of a soft rot pathogen is critical for easy control, as each pathogen has distinct ways of being controlled. Lelliottia amnigena is a subgroup of the genus Enterobacter with many species associated with crop plants, making its classification difficult and complex. Therefore, this study focused on the isolation and identification of a newly L. amnigena from rotten potato tuber obtained from the field after harvest, Lanzhou City, China. Four strains designated as PC2, PC3, PC4 and PC5 were isolated from the same rotting potato tuber. Pathogenicity test showed that strain PC3 induced soft rot symptoms on healthy potato tubers. Koch's postulates were confirmed by re-isolating the strain PC3 in the inoculated tubers. Strain PC3 showed a convex, oval and smooth colony, measuring 0.9-1.3 1.8-3.6 µm under the microscopic observation. Phylogenetic analysis based on 16S rRNA, rpoB and atpD genes showed that strain PC3 species was 99.44%, 97.24%, and 100%, closely related to L. amnigena with accession numbers 240-a-etp (MN208158.1), FDAARGOS (CP023529.1) and R-6 (MN658356.1), respectively. The bacterial strain (PC3) was deposited in the Genbank with the accession number SUB10508072 PC3 OK447935. To the best of our knowledge, this is the first report of L. amnigena causing soft rot on potato tubers in China.


Subject(s)
Solanum tuberosum , Enterobacteriaceae , Phylogeny , Plant Diseases/microbiology , RNA, Ribosomal, 16S/genetics , Solanum tuberosum/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL