Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
J Ethnopharmacol ; 319(Pt 3): 117358, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37890806

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Inulae Herba (IH) is known as Jinfeicao recorded in Chinese Pharmacopoeia with effects of lowering qi and eliminating phlegm, and used for the treatment of pulmonary diseases. However, its protective mechanism on pulmonary diseases, especially acute lung injury (ALI), is still undefined. AIM OF THE STUDY: This study aimed to explore anti-inflammatory and anti-oxidation effects of IH and its underlying mechanism for treating ALI. MATERIALS AND METHODS: We constructed a lipopolysaccharide (LPS)-ALI mouse model to reveal the therapeutical effect of IH. Western blot, real-time quantitative PCR, flow cytometry, small RNA interference, immunohistochemical staining, and the dual-luciferase experiment were performed to study the mechanism of IH for treating ALI. RESULTS: IH attenuated LPS-mediated pathological changes (e.g. pneumonedema and pulmonary congestion) through inactivation of macrophages in an ALI mouse model. The result of flow cytometry demonstrated that IH regulated the homeostasis of M1 (CD80+CD206-) and M2 (CD80+CD206+) phenotype macrophages. Furthermore, IH suppressed mRNA expressions of M1 phenotype markers, such as iNOS and IL-6, whereas promoted mRNA expressions of M2 phenotype markers, such as ARG1 and RETNLA in LPS-mediated mice. Notably, IH targeted Keap1 to activate the Nrf2 receptor, exerting its anti-inflammatory and anti-oxidation effects proved by using immunohistochemical staining, dual-luciferase, and Keap1 knockdown technologies. CONCLUSION: These findings suggested that targeting Keap1 with IH alleviated LPS-mediated ALI, and it could serve as a herbal agent for developing anti-ALI drugs.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Animals , Mice , Kelch-Like ECH-Associated Protein 1/genetics , Lipopolysaccharides/toxicity , NF-E2-Related Factor 2/genetics , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Luciferases , RNA, Messenger
2.
Fitoterapia ; 167: 105510, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37075985

ABSTRACT

Osthole is one of the major constituents in Cnidium monnieri (L.) Cuss. and possesses anti-osteoporosis activity. In this work, the biotransformation of osthole was performed based on the human intestinal fungi Mucor circinelloides. Six metabolites including three new metabolites (S2, S3, S4) were obtained, and their chemical structures were elucidated by spectroscopic data analysis. The major biotransformation reactions involved hydroxylation and glycosylation. In addition, all metabolites were evaluated for their anti-osteoporosis activity using MC3T3-E1 cells. The results demonstrated that S4, S5 and S6 could significantly promote MC3T3-E1 cell growth compared to osthole.


Subject(s)
Coumarins , Fungi , Humans , Molecular Structure , Coumarins/pharmacology , Cell Proliferation
3.
J Ethnopharmacol ; 312: 116449, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37023835

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jinhongtang as a traditional Chinese medicine (TCM) formula, has been widely used as a clinical adjuvant in the treatment of acute abdominal diseases and sepsis. Clinical benefits of the concurrent use of Jinhongtang and antibiotics have been observed, however, the mechanism has not been fully understood. AIM OF THE STUDY: The present study aimed to explore the effect of Jinhongtang on the antibacterial activity of Imipenem/Cilastatin and to clarify the underlying mechanism of herb-drug interaction (HDI). MATERIALS AND METHODS: A mouse model of sepsis induced by Staphylococcus aureus (S. aureus) was used to evaluate the pharmacodynamic interaction in vivo. In vitro antibacterial activity of Imipenem/Cilastatin was studied by determining minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Pharmacokinetic interaction was investigated by pharmacokinetic studies in rats and uptake assays using OAT1/3-HEK293 cells. The main constituents ingested into blood of rats were qualitatively identified by UHPLC-Q-TOF-MS. RESULTS: Mice treated by Imipenem/Cilastatin and Jinhongtang exhibited higher survival rate, lower bacteria load and less inflammation in blood and lung tissues, compared with those treated by Imipenem/Cilastatin alone after injection of S. aureus. However, MIC and MBC of Imipenem/Cilastatin against S. aureus in vitro were not significantly changed in the presence of Jinhongtang. On the contrary, Jinhongtang increased the plasma concentration of Imipenem and decreased its urinary excretion in rats. CLr of Imipenem was reduced by 58.5%, while its half-life (t1/2) was prolonged for approximate 1.2 times after coadministered Jinhongtang. Furthermore, the extracts of Jinhongtang, single herb in the prescription, and main absorbable constituents inhibited cellular uptake of probe substrates and Imipenem by OAT1/3-HEK293 cells to different extents. Among them, rhein exhibited the strongest inhibition capacity with IC50 values of 0.08 ± 0.01 µM (OAT1) and 2.86 ± 0.28 µM (OAT3). Moreover, coadministration of rhein also significantly enhanced the antibacterial activity of Imipenem/Cilastatin in sepsis mice. CONCLUSION: Concomitant administration of Jinhongtang enhanced antibacterial activity of Imipenem/Cilastatin in sepsis mice induced by S. aureus through reducing renal elimination of Imipenem via inhibition of OATs. Our investigation provided the insight of Jinhongtang as an effective supplement to enhance the antibacterial activity of Imipenem/Cilastatin and can be useful for future clinical studies.


Subject(s)
Organic Anion Transporters , Sepsis , Humans , Rats , Animals , Mice , Herb-Drug Interactions , Cilastatin/pharmacokinetics , Cilastatin/therapeutic use , Staphylococcus aureus , HEK293 Cells , Cilastatin, Imipenem Drug Combination/therapeutic use , Imipenem/pharmacokinetics , Imipenem/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Sepsis/drug therapy , Drug Combinations
4.
J Ethnopharmacol ; 304: 116016, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36535328

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jinhongtang, a traditional Chinese medicine (TCM) formula consisting of dry stems of Rheum palmatum L. (Polygonaceae) and Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson (Lardizabalaceae) and whole plant of Taraxacum mongolicum Hand.-Mazz. (Asteraceae), is widely used for the treatment of infection diseases including severe sepsis and COVID-19. AIM OF THE STUDY: The present study aimed to explore the compatibility mechanism in the prescription of Jinhongtang based on the pharmacokinetic interaction. MATERIALS AND METHODS: CLP-induced sepsis mice and LPS-induced RAW264.7 cells were used to explore the anti-inflammatory effect of Jinhongtang and herbs in this clinical prescription. Pharmacokinetics of active components in Jinhongtang (Rhein, Emodin and Aloe emodin) was studied in rats. In vitro analysis of metabolic pathways and interactions mediated by metabolic enzymes were conducted using human liver microsomes (HLMs) and recombinant UGT isoforms. RESULTS: Jinhongtang exhibited much more potent anti-inflammatory effect than its single herbs on CLP-induced sepsis mice and LPS-induced RAW264.7 cells. Next, the bioavailability of active ingredients (Rhein, Emodin and Aloe emodin) in R. palmatum was significantly improved through reduced metabolic clearance when co-administered with S. cuneata and T. mongolicum as Jinhongtang during the in vivo pharmacokinetic study, which presented the rational herbal compatibility mechanism. In detailed, the components in S. cuneata and T. mongolicum including Sargentodoxoside A, Chanitracin Ia, Quercetin and Luteolin inhibited the UGT1A9-mediated glucuronidation of active ingredients in R. palmatum, with Ki values of 2.72 µM, 1.25 µM, 2.84 µM and 0.83 µM, respectively. CONCLUSION: T. mongolicum and S. cuneata, the adjuvant herbs of Jinhongtang, could reduce the metabolic clearance of key active components of R. palmatum, prolong their action time and further enhance their anti-inflammatory activity via inhibition of UGTs. Our findings provided deep insight for the rational compatibility of TCMs and useful guidance for the development of TCM formula.


Subject(s)
COVID-19 , Emodin , Sepsis , Rats , Mice , Humans , Animals , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Sepsis/drug therapy
5.
J Chromatogr Sci ; 61(5): 440-452, 2023 May 30.
Article in English | MEDLINE | ID: mdl-35913259

ABSTRACT

Jinhongtang granule (JHT) is a traditional Chinese medicine formula used for treatment of infection diseases including severe COVID-19. However, pharmacokinetics of JHT was unknown, especially in infection condition. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to simultaneously quantify ten active components form JHT in rat plasma. MS detection was performed by MRM scanning operating in the negative ionization mode. The method showed good linearity (r > 0.997). The accuracy, precision, matrix effect, recovery and stability were all satisfactory with current criterion. The method was successfully applied to compare the pharmacokinetic difference between normal and sepsis rats. The pharmacokinetic behaviors of analytes in sepsis rats were significantly different from those in normal rats. Cmax and AUC of rhein, emodin, aloe emodin, rhein-8-glucoside, aloe emodin 8-glucoside, protocatechuic acid, epicatechin and salidroside, were significantly increased in sepsis rats, except for 4-hydroxycinnamic acid and ferulic acid. In vitro intestinal absorption study using everted intestinal sac preparations indicated that the intestinal permeability was altered under sepsis. In conclusion, pharmacokinetic difference of JHT between normal and sepsis rats were evaluated for the first time, which provided useful information for the clinical application of JHT as an integrative therapy for severe and critical COVID-19.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Sepsis , Rats , Animals , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Glucosides , Sepsis/drug therapy , Reproducibility of Results
6.
Phytomedicine ; 107: 154380, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36150346

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a severe respiratory disease characterized by diffuse lung interstitial and respiratory distress and pulmonary edema with a mortality rate of 35%-40%. Inula japonica Thunb., known as "Xuan Fu Hua" in Chinese, is a traditional Chinese medicine Inulae Flos to use for relieving cough, eliminating expectorant, and preventing bacterial infections in the clinic, and possesses an anti-pulmonary fibrosis effect. However, the effect and action mechanism of I. japonica on ALI is still unclear. PURPOSE: This study aimed to investigate the protective effect and underlying mechanism of total flavonoids of I. japonica (TFIJ) in the treatment of ALI. STUDY DESIGN AND METHODS: A mouse ALI model was established through administration of LPS by the intratracheal instillation. Protective effects of TFIJ in the inflammation and oxidative stress were studied in LPS-induced ALI mice based on inflammatory and oxidative stress factors, including MDA, MPO, SOD, and TNF-α. Lipid metabolomics, bioinformatics, Western blot, quantitative real-time PCR, and immunohistochemistry were performed to reveal the potential mechanism of TFIJ in the treatment of ALI. RESULTS: TFIJ significantly alleviated the interstitial infiltration of inflammatory cells and the collapse of the alveoli in LPS-induced ALI mice. Lipid metabolomics demonstrated that TFIJ could significantly affect the CYP2J/sEH-mediated arachidonic acid metabolism, such as 11,12-EET, 14,15-EET, 8,9-DHET, 11,12-DHET, and 14,15-DHET, revealing that sEH was the potential target of TFIJ, which was further supported by the recombinant sEH-mediated the substrate hydrolysis in vitro (IC50 = 1.18 µg/ml). Inhibition of sEH by TFIJ alleviated the inflammatory response and oxidative stress via the MAPK, NF-κB, and Nrf2 signaling pathways. CONCLUSION: These results demonstrated that TFIJ could suppress the sEH activity to stabilize the level of EETs, allowing the alleviation of the pathological course of lung injury in LPS-treated mice, which suggested that TFIJ could serve as the potential agents in the treatment of ALI.


Subject(s)
Acute Lung Injury , Inula , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Arachidonic Acid/metabolism , Expectorants/adverse effects , Flavonoids/pharmacology , Flavonoids/therapeutic use , Lipopolysaccharides/pharmacology , Lung , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
Food Funct ; 13(18): 9470-9480, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-35983876

ABSTRACT

Inhibition of ferroptosis in intestinal epithelial cells ameliorates clinical symptoms and improves endoscopic presentations in inflammatory bowel disease (IBD). Licorice is used worldwide in food and medicine fields. Liquiritin, a flavonoid component in licorice, is an effective substance used as an anti-inflammatory, antioxidant food that has been shown to improve chemically induced colitis. Herein we evaluated the therapeutic effects of liquiritin on colitis and determined whether liquiritin could affect colitis by modulating ferroptosis in epithelial cells. A colitis model was induced in mice by oral administration with 2.5% DSS dissolved in drinking water. The results showed that liquiritin significantly alleviated symptoms, suppressed intestinal inflammation and restored the epithelial barrier function in the colitis mouse model. Liquiritin supplementation upregulated colonic ferritin expression, increased the storage of cellular iron, reduced the cellular iron level and further inhibited ferroptosis in epithelial cells from the colitis model. Pharmacological stimulation of ferroptosis largely blocked liquiritin-induced alleviation of colitis. Peroxiredoxin-6 (Prdx6) expression was significantly decreased in the DSS group, which was reversed by liquiritin treatment. Genetic or pharmacological silencing of Prdx6 largely reversed liquiritin-induced modulation of the ferritin/iron level and ferroptosis in epithelial cells. Molecular docking results showed that liquiritin could bind to Prdx6 through the hydrogen bond interaction with amino acid residues Thr208, Val206 and Pro203. In conclusion, liquiritin treatment largely alleviated DSS induced colitis by inhibiting ferroptosis in epithelial cells. Liquiritin negatively regulated ferroptosis in epithelial cells in colitis by activating Prdx6, increasing the expression of ferritin and subsequently reducing the cellular iron level.


Subject(s)
Colitis , Ferroptosis , Flavanones , Peroxiredoxin VI , Amino Acids/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/genetics , Dextran Sulfate/adverse effects , Disease Models, Animal , Epithelial Cells/metabolism , Ferritins/metabolism , Flavanones/pharmacology , Glucosides/pharmacology , Iron/metabolism , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Peroxiredoxin VI/metabolism
8.
Chin Med ; 17(1): 96, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35974396

ABSTRACT

BACKGROUND: Shaoyao Decoction (SYD) is a canonical herbal medicine prescription formulated by Liu Wan-Su in AD 1186. SYD has been widely used to treat inflammatory bowel disease by clearing heat and damp, removing stasis toxin in the intestine; however, the precise mechanisms and therapeutic material basis remain largely unclear. In the present study, we measured the effects of SYD on colitis symptom, epithelial barrier function, epithelial ferroptosis, colonic protein and mRNA expression of glutathione peroxidase 4 (GPX4) in colitis model, and determined whether SYD restored barrier loss in colitis by modulation of GPX4-regulated ferroptosis pathway. METHODS: Colitis was established by infusion with 1 mL 2,4,6-trinitrobenzene sulfonic acid (TNBS) dissolved in ethanol (40% v/v) in rats at a 125 mg/kg dose. Ferroptosis in epithelial cells was determined by flow cytometer. GPX4 promoter-firefly luciferase fusion construct was transfected to Caco-2 cell to determine GPX4 transcription. MS analysis was used to identified ingredients in SYD. RESULTS: Different doses of SYD significantly alleviated colitis, decreased ferroptosis in epithelial cells, knockout of GPX4 significantly reversed SYD-induced alleviation effects on colitis, restoration of epithelial barrier function, and epithelial ferroptosis. Wogonoside, wogonin, palmatine, paeoniflorin and liquiritin were identified as active ingredients of SYD-exerted alleviation effects of colitis based on GPX4 agonistic transcription. CONCLUSION: SYD alleviated chemically induced colitis by activation of GPX4, inhibition of ferroptosis in epithelial cells and further restoration of barrier function. Wogonoside, wogonin, palmatine, paeoniflorin and liquiritin were identified as the key therapeutic material basis of SYD-exerted anti-colitis effects. The findings provide a scientific basis for the therapeutic effect of SYD on colitis.

9.
J Sep Sci ; 45(13): 2118-2127, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35384334

ABSTRACT

Langdu, known as a traditional Chinese medicine, was identified as the roots of species of Euphorbia ebracteolata Hayata and Euphorbia fischeriana Steud, displaying anti-tuberculosis activity. To clarify the potent quality markers of Langdu, this research first developed a fast and sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry method for the quantification of 13 diterpenoids in Langdu. The developed method was further applied in the analyses of 12 authentic E. ebracteolata and E. fischeriana samples collected in northern and southeastern China. Then, the anti-tuberculosis evaluation of 12 batches of Langdu samples was performed in vitro. Finally, partial least squares discrimination analysis was used in the discrimination of E. ebracteolata and E. fischeriana from different origins and processing methods. Jolkinolide A (1), jolkinolide E (3), yuexiandajisu D (6), and ebractenone A (11) were identified as key, potent diterpenoids for the quality control of E. ebracteolata Hayata and E. fischeriana Steud. The present study established a qualitative chemical analysis method for Langdu (E. ebracteolata and E. fischeriana) and suggested the key bioactive components that will improve qualitative control methodology for this important medicine.


Subject(s)
Diterpenes , Euphorbia , Chromatography, High Pressure Liquid/methods , Diterpenes/analysis , Ecosystem , Euphorbia/chemistry , Gas Chromatography-Mass Spectrometry , Plant Roots/chemistry , Tandem Mass Spectrometry
10.
Front Pharmacol ; 13: 856784, 2022.
Article in English | MEDLINE | ID: mdl-35295338

ABSTRACT

CYP3A4-mediated Phase I biotransformation is the rate-limiting step of elimination for many commonly used clinically agents. The modulatory effects of herbal medicines on CYP3A4 activity are one of the risk factors affecting the safe use of drug and herbal medicine. In the present study, the inhibitory effects of nearly hundred kinds of herbal medicines against CYP3A4 were evaluated based on a visual high-throughput screening method. Furthermore, biflavone components including bilobetin (7-demethylginkgetin, DGK), ginkgetin (GK), isoginkgetin (IGK), and amentoflavone (AMF) were identified as the main inhibitory components of Ginkgo biloba L. (GB) and Selaginella tamariscina (P. Beauv.) Spring (ST), which displayed very strong inhibitory effects toward CYP3A4. The inhibitory effects of these biflavones on clinical drugs that mainly undergo CYP3A4-dependent metabolism were evaluated. The IC 50 of GK toward tamoxifen, gefitinib and ticagrelor were found to be of 0.478 ± 0.003, 0.869 ± 0.001, and 1.61 ± 0.039 µM, respectively. These results suggest the potential pharmacokinetic interactions between the identified biflavones and clinical drugs undergoing CYP3A4-mediated biotransformation. The obtained information is important for guiding the rational use of herbal medicine in combination with synthetic pharmaceuticals.

11.
Bioorg Chem ; 123: 105759, 2022 06.
Article in English | MEDLINE | ID: mdl-35349831

ABSTRACT

Bislangduoids A and B, a novel class of dimeric diterpenoids based on ent-abietanes tethered by C-17-C-15' bridge, were identified as trace components from a traditional Chinese medicine Euphorbia fischeriana (Langdu). Bislangduoid A features a highly oxidized scaffold incorporating a cage-like pentacyclic core. Their structures were elucidated by extensive spectroscopic techniques, electronic circular dichroism, and NMR calculations. The biosynthetic pathway for the dimeric skeleton and the unique caged moiety via Michael and acetal-formation reactions was proposed. Bislangduoid A showed pronounced cytotoxicity against HepG2 cells through the mitochondria-dependent apoptosis pathway.


Subject(s)
Antineoplastic Agents , Diterpenes , Euphorbia , Abietanes/chemistry , Abietanes/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Euphorbia/chemistry , Molecular Structure , Plant Roots/chemistry , Polymers
12.
Nat Prod Res ; 36(14): 3665-3672, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33538200

ABSTRACT

Sargentodoxa cuneata (Oliv.) Rehd. et Wils is a traditional Chinese medicine to treat acute appendicitis, rheumarthritis, abdominal pain, and painful menstruation for a long history. The investigation of S. cuneata led to the isolation and identification of twenty-three secondary metabolites, including two new compounds, sargentodoxosides A (1) and B (2), and twenty-one known ones (3-23). Their structural characterization was conducted by HRESIMS, 1 D and 2 D NMR spectra. All the isolated compounds were assayed for their agonistic activities against the farnesoid X receptor (FXR). Nine of the isolated compounds displayed significant agonistic effects against FXR at 0.1 µM, suggesting that they could be served as potential agents for the development of FXR agonists.


Subject(s)
Medicine, Chinese Traditional , Ranunculales , Ranunculales/chemistry
13.
Fitoterapia ; 155: 105054, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34626737

ABSTRACT

ß-Carboline alkaloid harmaline (HA) is a candidate drug molecule that has been proven to have broad and significant biological activity. Herein, the effects of HA on the riboflavin (RF)-sensitized photooxidation under aerobic conditions were studied for the first time. The photooxidation reaction of HA catalyzed by RF is triggered by UV light at 365 nm and shows a time-dependent stepwise reaction process. Seven transformed products, including five undescribed compounds, oxoharmalines A-E (1-4 and 7), and two known compounds, N-(2-(6-Methoxy-2-oxoindolin-3-yl)ethyl)acetamide (5) and harmine (6), were isolated and identified from the reaction system, following as the gradual oxidation mechanisms. The rare polymerization and dehydrogenation processes in radical-mediated photocatalytic reactions were involved in the process. The transformed products 2-7 exhibited significant neuroprotective activity in a model of H2O2-introduced injury in SH-SY5Y cells, which suggested that the products of the interaction between HA and vitamins may be beneficial to health.


Subject(s)
Harmaline/pharmacology , Neuroprotective Agents/pharmacology , Riboflavin/metabolism , Carbolines , Cell Line, Tumor , Harmine , Humans , Molecular Structure , Oxidation-Reduction , Ultraviolet Rays
14.
Bioorg Chem ; 116: 105356, 2021 11.
Article in English | MEDLINE | ID: mdl-34560562

ABSTRACT

Two undescribed ent-abietane-type diterpenoid dimers with nonacyclic backbone formed by intermolecular [4 + 2] cycloaddition into a spirocyclic skeleton, bisfischoids A (1) and B (2), along with a known one fischdiabietane A (3), were identified from Euphorbia fischeriana Steud. Their structures were elucidated by extensive spectroscopic analysis, ECD and NMR calculation combined with DP4+ probability analysis, as well as X-ray diffraction. The anti-inflammatory potential of dimers 1-3 were examined using their inhibitory effects on soluble epoxide hydrolase (sEH), which revealed that 1 and 2 exhibited promising activities with inhibition constant (Ki) of 3.20 and 1.95 µM, respectively. Further studies of molecular docking and molecular dynamics indicated that amino acid residue Tyr343 in the catalytic cavity of sEH was the key site for their inhibitory function.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Euphorbia/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Epoxide Hydrolases/metabolism , Humans , Medicine, Chinese Traditional , Molecular Structure , Structure-Activity Relationship
15.
Int J Biol Macromol ; 183: 811-817, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33957203

ABSTRACT

Inhibition of soluble epoxide hydrolase (sEH) is considered to be an effective treatment for inflammation-related diseases, and small molecules origin from natural products show promising activity against sEH. Two undescribed protostanes, 3ß-hydroxy-25-anhydro-alisol F (1) and 3ß-hydroxy-alisol G (2) were isolated from Alisma orientale and identified as new sEH inhibitors with IC50 values of 10.06 and 30.45 µM, respectively. Potential lead compound 1 was determined as an uncompetitive inhibitor against sEH, which had a Ki value of 5.13 µM. In-depth molecular docking and molecular dynamics simulations revealed that amino acid residue Ser374 plays an important role in the inhibition of 1, which also provides an idea for the development of sEH inhibitors based on protostane-type triterpenoids.


Subject(s)
Alisma/chemistry , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Triterpenes/pharmacology , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/chemistry , Inhibitory Concentration 50 , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Pharmacokinetics , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Conformation , Triterpenes/chemistry
16.
Fitoterapia ; 152: 104858, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33677011

ABSTRACT

Traditional Chinese medicines (TCMs), have been widely used for the prevention, treatment, and cure of various diseases for thousands of years in China and Asian countries. It is usually applied either alone or in combination with synthetic drugs or other herbs to be more effective. However, the evaluation of TCMs against the main phase I metabolic enzyme CYP3A4 in vitro was limited. In the present study, a high throughput method based on an isoform-specific probe was applied to evaluate the inhibitory effect of 225 frequently-used TCMs on CYP3A4 activity. The results showed that 25 TCM herbs possessed inhibition effect with residual activity below 50%, and four TCMs (Curcumae Rhizoma, Piperis Longi Fructus, Dalbergiae Odoriferae Lignum, Arisaematis Rhizoma Preparatum) had fairly strong inhibition effect with residual activity below 20%. In an attempt to validate the results obtained from isoform-specific probe, the Curcumae Rhizoma with lowest residual activity was further tested to screen main bioactive constituents which possessed significant inhibitive effect. The crude extract of Curcumae Rhizoma was fractionated to investigate the inhibition effect of each fraction, the results showed that fractions 9-13 exhibited obvious inhibitory effect, and the main constituent (curdione) was identified with standard reference. The molecular docking results verified that the inhibiting effect of curdione could be explained that curdione was interacted with 7 amino acid residues to generate the hydrophobic interaction, and also interacted with imidazole to form hydrogen bond. It is anticipated that the results could be used as reference data to avoid drug-drug interaction and guide the clinical application of TCM or prescriptions.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drugs, Chinese Herbal/pharmacology , Curcuma/chemistry , Cytochrome P-450 CYP3A , Humans , Medicine, Chinese Traditional , Microsomes, Liver/drug effects , Molecular Docking Simulation , Rhizome/chemistry
17.
Am J Chin Med ; 49(2): 315-358, 2021.
Article in English | MEDLINE | ID: mdl-33622212

ABSTRACT

As a genus of the Asteraceae, Inula is widely distributed all over the world, and several of them are being used in traditional medicines. A number of metabolites were isolated from Inula species, and some of these have shown to possess ranges of pharmacological activities. The genus Inula contains abundant sesquiterpenoids, such as eudesmanes, xanthanes, and sesquiterpenoid dimers and trimers. In addition, other types of terpenoids, flavonoids, and lignins also exist in the genus Inula. Since 2010, more than 300 new secondary metabolites, including several known natural products that were isolated for the first time from the genus Inula. Most of them exhibited potential bioactivities in various diseases. The review aimed to summarize the advance of recent researches (2010-2020) on phytochemical constituents, biosynthesis, and pharmacological properties of the genus Inula for providing a scientific basis and supporting its application and exploitation for new drug development.


Subject(s)
Inula/chemistry , Plant Extracts , Drug Development , Humans , Molecular Structure , Plant Extracts/biosynthesis , Plant Extracts/chemistry , Plant Extracts/pharmacology
18.
J Ethnopharmacol ; 270: 113840, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33460761

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Sargentodoxa comprises only one species, Sargentodoxa cuneata (Oliv.) Rehd et al., widely distributed in the subtropical zone of China. The plant is extensively used in traditional medicine for treating arthritis, joint pains, amenorrhea, acute appendicitis and inflammatory intestinal obstruction. Pharmacological studies show anti-inflammatory, antioxidant, antitumor, antimicrobial, and anti-sepsis activities. AIM OF THE REVIEW: This review aims to summarize the information about distribution, traditional uses, chemical constituents and pharmacological activities of S. cuneata, as an attempt to provide a scientific basis for its traditional uses and to support its application and development for new drug development. METHODOLOGY: Scientific information of S. cuneata was retrieved from the online bibliographic databases, including Web of Science, Google Scholar, PubMed, Springer Link, the Wiley online library, SciFinder, Baidu Scholar, China national knowledge infrastructure (CNKI) and WANFANG DATA (up to March 2020). We also search doctoral dissertations, master dissertations conference papers and published books. The keywords were used: "Sargentodoxa", "Da Xue Teng", "Hong Teng", "Xue Teng", "secondary metabolites", "chemical components", "biological activity", "pharmacology", "traditional uses". OBSERVATIONS AND RESULTS: S. cuneata is utilized as valuable herbal medicines to treat various diseases in China. Over 110 chemical constituents have been isolated and identified from the stem of S. cuneata, including phenolic acids, phenolic glycosides, lignans, flavones, triterpenoids and other compounds. The extract and compounds of S. cuneata have a wide spectrum of pharmacological activities, including antitumor, anti-inflammatory, antioxidant, antimicrobial, anti-sepsis and anti-arthritis effects, as well as protective activity against cerebrovascular diseases. CONCLUSION: S. cuneata has a rich legacy for the treatment of many diseases, especially arthritis and sepsis, which is reinforced by current investigations. However, the present studies about bioactive chemical constituents and detail pharmacological mechanisms of S. cuneata were insufficient. Further studies should focus on these aspects in relation to its clinical applications. This review has systematically summarized the traditional uses, phytochemical constituents and pharmacological effects of S. cuneata, providing references for the therapeutic potential of new drug development.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Phytochemicals/chemistry , Phytochemicals/pharmacology , Ranunculales/chemistry , Animals , Drugs, Chinese Herbal/therapeutic use , Ethnopharmacology , Humans , Phytochemicals/therapeutic use , Ranunculales/metabolism
19.
Phytother Res ; 35(4): 1872-1886, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33184919

ABSTRACT

The genus Alisma contains 11 species distributed worldwide, of which at least two species (A. orientale [Sam.] Juzep. and A. plantago-aquatica Linn.) have been used as common herbal medicines. Secondary metabolites obtained from the genus Alisma are considered to be the material basis for the various biological functions and medicinal applications. In this review, we mainly focused on the recent investigations of secondary metabolites from plants of the genus Alisma and their biological activities, with the highlighting on the diversity of the chemical structures, the biosynthesis of interesting secondary metabolites, the biological activities, and the relationships between structures and bioactivities.


Subject(s)
Alisma/chemistry , Phytochemicals/therapeutic use , Plants, Medicinal/chemistry , Humans
20.
Fitoterapia ; 148: 104779, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33242535

ABSTRACT

Triptolidenol (TPD) is an epoxy diterpene lactone from Tripterygium wilfordii, which has been used for chronic nephritis in China,and possessed various pharmacological properties, such as anti-inflammatory and anti-cancer activities. However, the precise molecular antitumor mechanism of TPD remains to be elucidated. In this study, we investigated the effects of TPD on human clear cell renal cell carcinoma (ccRCC) and investigated its precise anti-tumor mechanisms. It was showed that TPD significantly suppressed ccRCC cell proliferation, cell migration, and induced cell cycle arrest at S phase. Furthermore, TPD also induced apoptosis by activating the cytochrome c (cyt c)/caspase cascade signaling pathway. Moreover, using confocal immunofluorescence, a dual-luciferase reporter assay and molecular docking study, the results showed that TPD obviously reduced the expression of COX-2 by inhibiting the kinase activity of IKKß via targeting its ATP-binding domain, and then attenuating the transactivation of NF-κB. Collectively, our study demonstrated that TPD suppressed renal cell carcinoma growth through disrupting NF-κB/COX-2 pathway by targeting ATP-binding sites of IKKß, and provided pharmacological evidence that TPD exhibits potential use in the treatment of COX-2-mediated diseases such as ccRCC.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Renal Cell/pathology , Diterpenes/pharmacology , Kidney Neoplasms/pathology , Lactones/pharmacology , Tripterygium/chemistry , Adenosine Triphosphate/metabolism , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Binding Sites , Carcinoma, Renal Cell/drug therapy , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cyclooxygenase 2/metabolism , Diterpenes/isolation & purification , Humans , I-kappa B Kinase/metabolism , Kidney Neoplasms/drug therapy , Lactones/isolation & purification , Molecular Docking Simulation , Molecular Structure , NF-kappa B/metabolism , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL