Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Affiliation country
Publication year range
1.
Zhen Ci Yan Jiu ; 49(3): 256-264, 2024 Mar 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500322

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) on behavior, oxidative stress factors in colon and substantia nigra of Parkinson's disease (PD) mice, so as to explore the mechanism of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into blank, model and EA groups, with 12 mice in each group. The PD mouse model was established by continuous gavage of rotenone for 4 weeks. Mice in the EA group received EA (2 Hz/15 Hz) at "Baihui" (GV20), "Quchi" (LI11) and "Zusanli" (ST36) for 20 min, 5 days a week for 2 weeks. After intervention, gait analysis was used to evaluate the motor ability and motor coordination. Ink propulsion rate was used to evaluate the intestinal transport function. The level of reactive oxygen species (ROS) in the colon was detected by flow cytometry. The contents of total protein (TP), malondialdehyde (MDA) and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) in colon and substantia nigra were detected by ELISA. The expression of nuclear factor E2-related factor 2 (Nrf2) in substantia nigra was detected by immunofluorescence staining. RESULTS: Compared with the blank group, the average speed, step rate, normal step ratio, distance between the front and hind feet, stride length, swing speed and maximum intensity of the maximum contact area of mice in the model group were decreased (P<0.000 1, P<0.01, P<0.001), the maximum change rate of gait was increased (P<0.001) in the model group. The intestinal propulsion rate, the activities of GSH-Px and SOD in the colon and substantia nigra, and the positive expression of Nrf2 in substantia nigra were decreased (P<0.000 1, P<0.01, P<0.05), while the fluorescence intensity of ROS in the colon, the contents of MDA in colon and substantia nigra were increased (P<0.01). Compared with the model group, the average speed, step rate, normal step ratio, distance between the front and hind feet, stride length, swing speed, and maximum intensity of the maximum contact area of the mice in the EA group were increased (P<0.01, P<0.05, P<0.001, P<0.000 1), the maximum change rate of gait was decreased (P<0.01). The intestinal propulsion rate, the activities of GSH-Px and SOD in the colon and substantia nigra, the positive expression of Nrf2 in substantia nigra were increased (P<0.001, P<0.05, P<0.000 1), while the ROS fluorescence intensity in the colon, the MDA contents in the colon and substantia nigra were decreased (P<0.01). CONCLUSIONS: EA can improve the movement disorder, gait disorder and intestinal motor function of PD mice, and protect dopaminergic neurons from damage, which may be related to its effect in antagonistic brain-gut oxidative stress.


Subject(s)
Electroacupuncture , Parkinson Disease , Rats , Mice , Animals , Parkinson Disease/genetics , Parkinson Disease/therapy , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Mice, Inbred C57BL , Oxidative Stress , Substantia Nigra/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Antibodies
2.
Nat Prod Res ; : 1-6, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299977

ABSTRACT

Phytochemical investigation of the whole plant of Gerbera delavayi afforded four new glycosides including three coumarin glycosides, Gerbelavinside A (1), Gerbelavinside B (2) and Gerbelavinside C (3) and one acetophenone glycoside, Gerbelavinside F (4). The structures of isolated compounds were elucidated by analysis of 1D and 2D NMR, HR-ESI-MS, acid hydrolysis, as well as comparing with the literature. The isolated compounds were examined the effects of nitric oxide (NO) production inhibition in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells, and Gerbelavinside C presented a certain inhibitory activity.

3.
Zhen Ci Yan Jiu ; 48(12): 1242-1248, 2023 Dec 25.
Article in English, Chinese | MEDLINE | ID: mdl-38146247

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) on ferroptosis and apoptosis-related proteins in the substantia nigra of midbrain in mice with Parkinson's disease (PD), so as to explore its possible mechanisms in the treatment of PD. METHODS: Twenty-four C57BL/6 mice were randomly divided into blank, model and EA groups, with 8 mice in each group. The PD model was established by continuous gavage of rotenone for 4 weeks. EA was applied at "Baihui" (GV20), "Quchi" (LI11) and "Zusanli" (ST36) for 20 min, once a day for 14 days, with 2-day rest after every 5-day treatment. The open field test was used to evaluate the residence time in the central area, ave-rage movement speed, and total distance of the open field. Western blot was used to detect the protein expression le-vels of divalent metal ion transporter 1 (DMT1), membrane ferroportin 1 (FPN1), glutathione peroxidase 4 (GPX4), proapoptotic protein Bax, and anti apoptotic protein Bcl-2 in the substantia nigra. Immunohistochemical method was used to detect the morphological changes of neurons and the positive expression of tyrosine hydroxylase (TH) in the substantia nigra of mice. RESULTS: After 4 weeks of modeling, compared with the blank group, the residence time in the central area, average speed and total distance of open field were significantly lower (P<0.000 1, P<0.01, P<0.001);the protein expression levels of DMT1 and Bax in the substantia nigra were increased (P<0.001, P<0.000 1), while the protein expression levels of FPN1, GPX4 and Bcl-2, and the optical density of TH+ cells in the substantia nigra were decreased (P<0.000 1, P<0.001) in the model group. In comparison with the model group, the residence time in the central area, average speed, and total distance of the EA group were increased (P<0.01, P<0.05);the protein expression levels of DMT1 and Bax in the substantia nigra were decreased (P<0.01, P<0.001), while the protein expression levels of FPN1, GPX4, and Bcl-2, and the optical density of TH+ cells in the substantia nigra were increased (P<0.000 1, P<0.01, P<0.001, P<0.05). CONCLUSIONS: EA has a protective effect on dopaminergic neurons in the substantia nigra of midbrain in PD model mice, which may be related with its effect in regulating oxidative stress and cell apoptosis induced by ferroptosis.


Subject(s)
Electroacupuncture , Ferroptosis , Parkinson Disease , Rats , Mice , Animals , Parkinson Disease/genetics , Parkinson Disease/therapy , Rats, Sprague-Dawley , Ferroptosis/genetics , bcl-2-Associated X Protein/metabolism , Mice, Inbred C57BL , Substantia Nigra/metabolism , Apoptosis/genetics , Oxidative Stress , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
4.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5632-5640, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114156

ABSTRACT

This study aimed to investigate the mechanism of Xihuang Pills in improving hyperplasia of mammary gland(HMG) in rats based on urine metabolomics using ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS). The HMG rat model was established by intramuscular injection of estradiol benzoate solution(0.5 mg·kg~(-1), 25 days) followed by progesterone injection(5 mg·kg~(-1), 5 days). UPLC-Q-Orbitrap-MS technology was used to establish the endogenous small-molecule metabolic profiles in urine samples of rats in the blank group, the HMG model group, and Xihuang Pills group. Multivariate statistical analysis was performed for pattern recognition, t test and variable importance in the projection(VIP) were used to screen potential biomarkers. The significantly changed differential metabolites were identified using the online database Human Metabolome Database(HMDB). Metabolic pathway enrichment analysis was conducted using the MetaboAnalyst 5.0 database. The results showed that 90 differential metabolites with significant changes(P<0.05) were identified between the blank group and the HMG model group using the HMDB. Among them, 48 metabolites significantly reverted(P<0.05) after administration of Xihuang Pills, which may be related to the regulatory effect of Xihuang Pills. Thirteen metabolic pathways significantly associated with HMG were identified when the differential metabolites were imported into the MetaboAnalyst 5.0 database, and Xihuang Pills could modulate seven of these pathways. These metabolic pathways mainly involved histidine metabolism, arginine and proline metabolism, ß-alanine metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, pyrimidine metabolism, and amino sugar and nucleotide sugar metabolism. This study utilized UPLC-Q-Orbitrap-MS and urine metabolomics technology to analyze the mechanism of Xihuang Pills in improving HMG, laying the foundation for further in-depth research.


Subject(s)
Metabolome , Metabolomics , Humans , Rats , Animals , Chromatography, High Pressure Liquid/methods , Hyperplasia , Metabolomics/methods , Biomarkers/urine
5.
Zhen Ci Yan Jiu ; 48(11): 1103-1110, 2023 Nov 25.
Article in English, Chinese | MEDLINE | ID: mdl-37984907

ABSTRACT

OBJECTIVES: To observe the effect of acupuncture stimulation of "Yanglingquan"(GB34), "Zusanli"(ST36) and "Xuanzhong" (GB39) on arthritis index (AI), joint synovial membrane pathology, serum-related immunoinflammatory factors, and expressions of tumor suppressor gene mt-p53, nuclear factor kappa B (NF-κB) and peroxisome proliferator activated receptor gamma (PPARγ) in knee joint synovial tissue of rats with type Ⅱ collagen-induced arthritis (CIA), so as to explore its possible mechanisms underlying improvement of rheumatoid arthritis (RA). METHODS: Male SD rats were used in the present study. The CIA model was established by subcutaneous injection of collagen emulsion (200 µL/rat) in the tail root region on the first day and repeat (100 µL/rat) once on the 9th day. Eighteen successful CIA rats were randomized into model, medication and acupuncture groups, with 6 rats in each group. Other 6 normal rats were used as the normal control group. For rats of the medication group, leflunomide (1.9 mg/kg) was administrated by gavage, once a day, and for rats of the acupuncture group, manual acupuncture stimulation was applied to bilateral GB34, ST36, GB39 for 30 min, once a day, for 12 weeks. The arthritis index (AI) score (0-4 points) was evaluated once every week. The contents of IL-6, IL-17 and TNF-α in the serum were determined by ELISA. Histopathological changes of the ankle joint were observed by H.E. staining. The protein and mRNA expression levels of mt-p53, NF-κB p65, and PPARγ in the knee joint synovial tissue were determined by Western blot and quantitative real time PCR, separately. RESULTS: Compared with the normal control group, the AI scores at different time-points after modeling, contents of serum TNF-α, IL-6 and IL-17, expression levels of mt-p53, NF-κB p65, PPARγ proteins and mRNAs were significantly increased in the model group (P<0.01, P<0.05). In comparison with the model group, the AI scores at the 10th week in the medication group and at the 3rd, 9th and 10th week in the acupuncture group, contents of serum TNF-α, IL-6 and IL-17, and the expression levels of mt-p53 and NF-κB p65 proteins in both medication and acupuncture groups, as well as mt-p53 and NF-κB p65 mRNAs in the medication group were apparently decreased (P<0.01, P<0.05), while the expression levels of PPARγ protein in both medication and acupuncture group and PPARγ mRNA in the medication group were significantly up-regulated (P<0.05, P<0.01). No significant differences were found between the acupuncture and medication groups in down-regulating the AI score and serum TNF-α, IL-6 and IL-17 contents. The effect of acupuncture was weaker than that of medication in down-regulating the expression of mt-p53 and NF-κB p65 proteins and mRNAs and in up-regulating PPARγ mRNA (P<0.01). H.E. results showed ankle cartilage hyperplasia, reduced joint cavity, mild fibroproliferation and inflammatory cell infiltration in the surrounding soft tissue of the ankle joint in rats of the model group, which was milder in both medication and acupuncture groups. CONCLUSIONS: Acupuncture stimulation can improve the degree of joint inflammation and swelling in CIA rats, which may be related to its effects in inhibiting the overexpression of immunoinflammatory factors in serum and regulating expression of mt-p53, NF-κB p65, PPARγ mRNAs and proteins in the synovial tissue.


Subject(s)
Acupuncture Therapy , Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Male , Animals , NF-kappa B/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Interleukin-17/genetics , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Tumor Suppressor Protein p53/adverse effects , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/chemically induced , Arthritis, Experimental/genetics , Arthritis, Experimental/therapy , RNA, Messenger
6.
Zhen Ci Yan Jiu ; 48(10): 986-992, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-37879948

ABSTRACT

OBJECTIVES: To observe the effect of motion-style scalp acupuncture (MSSA) on H-reflex in rats with post-stroke spasticity (PSS), so as to explore the electrophysiological mechanisms of MSSA against spasticity. METHODS: A total of 36 male SD rats were randomly divided into sham operation, model and MSSA groups, with 12 rats in each group. The stroke model was established by occlusion of the middle cerebral artery. After modeling, rats in the MSSA group were treated by scalp acupuncture (manipulated every 15 min, 200 r/min) at ipsilesional "parietal and temporal anterior oblique line" (MS6) for a total of 30 min, the treadmill training (10 m/min) was applied during the needling retention, once daily for consecutive 7 days. The neurological deficits, muscle tone and motor function were assessed by Zea Longa score, modified modified Ashworth scale (MMAS) score and screen test score before and after treatment, respectively. The H-reflex of spastic muscle was recorded by electrophysiological recordings and the frequency dependent depression (FDD) of H-reflex was also recorded. The cerebral infarction volume was evaluated by TTC staining. RESULTS: Compared with the sham operation group, the Zea longa score, MMAS score, cerebral infarction volume, motion threshold, Hmax/Mmax ratio and FDD of H-reflex were significantly increased (P<0.01), while the screen test score was significantly decreased (P<0.01) in the model group. Intriguingly, compared with the model group, the above results were all reversed (P<0.01) in the MSSA group. CONCLUSIONS: MSSA could exert satisfactory anti-spastic effects in rats with PSS, the underlying mechanism may be related to the improvement of nerve function injury, the reduction of spastic muscle movement threshold, Hmax/Mmax ratio and H-reflex FDD.


Subject(s)
Acupuncture Therapy , Stroke , Rats , Male , Animals , Muscle Spasticity/etiology , Muscle Spasticity/therapy , Rats, Sprague-Dawley , Scalp , Stroke/complications , Stroke/therapy , Cerebral Infarction
7.
Molecules ; 28(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37446592

ABSTRACT

Variety, geographical origin, and harvest season are important factors affecting the accumulation of polyphenols in Lycium barbarum. In this study, the effects of these factors on the polyphenolic components of this species were analyzed using ultra-performance liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry. Moreover, the in vitro antioxidant activities of fruit extracts from this species were evaluated. The total polyphenolic contents of L. barbarum fruits from Jinghe County in Xinjiang and Zhongning County in Ningxia were 5.52-11.72 and 7.06-9.37 mg (gallic acid equivalent)/g dry weight, while the total flavonoid contents of L. barbarum fruits from these regions were 12.52-30.29 and 12.67-20.77 mg (rutin equivalent)/g dry weight, respectively. Overall, 39 types of polyphenols were identified in the fruit extracts, including 26 flavonoids, 10 phenolic acids, and three tannins. Of these, 11 polyphenols were quantitatively analyzed, which revealed rutin to be the most dominant polyphenolic component in fruits from Jinghe and Zhongning. There were significant differences (p < 0.05) in the polyphenolic contents and antioxidant activities of L. barbarum fruit extracts, depending on the geographical origin, variety, and harvest season. The antioxidant activity of this species was found to be significantly positively correlated with the polyphenolic contents. This study provided scientific guidance for comprehensive applications of polyphenols from different varieties of L. barbarum from separate geographical origins.


Subject(s)
Lycium , Polyphenols , Polyphenols/pharmacology , Antioxidants/chemistry , Lycium/chemistry , Fruit/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Flavonoids/analysis , Rutin/analysis
8.
J Ethnopharmacol ; 317: 116841, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37355079

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tenuigenin (TEN) is a main pharmacologically active component of Polygala tenuifolia Willd. (Polygalaceae), which has shown neuroprotective functions in Alzheimer's disease. Moreover, TEN also demonstrated an anti-oxidative impact in an in vitro model of Parkinson's disease, reducing damage and loss of dopaminergic neurons. AIM: This work focuses on the impact of TEN on locomotor recovery following spinal cord injury (SCI) and underpinning molecules involved. METHODS: A rat model of SCI was generated, and the rats were treated with TEN, oe-PTPN1 (PTP non-receptor type 1), a protein kinase B (Akt)/mammalian target of rapamycin (mTOR) antagonist LY294002, or an autophagy inhibitor 3-methyladenine (3-MA). Subsequently, locomotor function was detected. Pathological changes and neuronal activity in the spinal cord tissues were analyzed by hematoxylin and eosin staining, Nissl staining, and TUNEL assays. Protein expression of Beclin-1 and microtubule associated protein 1 light chain 3 beta (LC3B)-II/LC3B-I, PTPN1, IRS1, mTOR, and phosphorylated Akt (p-Akt) was analyzed by western blot assays. The LC3B expression was further examined by immunofluorescence staining. RESULTS: Treatment with TEN restored the locomotor function of SCI rats, reduced the cavity area and cell apoptosis, upregulated growth-associated protein 43 and neurofilament 200, and decreased the Beclin-1 and LC3B-II/LC3B-I levels in the spinal cord. TEN suppressed PTPN1 protein level, while PTPN1 suppressed IRS1 protein to reduce the p-Akt and mTOR levels. Either PTPN1 overexpression or LY294002 treatment blocked the promoting effect of TEN on SCI recovery. However, treatment with 3-MA suppressed autophagy, which consequently rescued the locomotor function and reduced neuron loss induced by PTPN1. CONCLUSION: This study demonstrates that TEN suppresses autophagy to promote function recovery in SCI rats by blocking PTPN1 and rescuing the IRS1/Akt/mTOR signaling.


Subject(s)
Proto-Oncogene Proteins c-akt , Spinal Cord Injuries , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Beclin-1/metabolism , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spinal Cord , Apoptosis , Autophagy , Mammals/metabolism
9.
Phytomedicine ; 117: 154917, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301184

ABSTRACT

OBJECTIVE: Multiple sclerosis (MS) is an immune disease in the central nervous system (CNS) associated with Th17 cells. Moreover, STAT3 initiates Th17 cell differentiation and IL-17A expression through facilitating RORγt in MS. Here, we reported that magnolol, isolated from Magnolia officinalis Rehd. Et Wils, was regarded as a candidate for MS treatment verified by both in vitro and in vivo studies. METHODS: In vivo, experimental autoimmune encephalomyelitis (EAE) model in mice was employed to evaluate the alleviation of magnolol on myeloencephalitis. In vitro, FACS assay was employed to evaluate the effect of magnolol on Th17 and Treg cell differentiation and IL-17A expression; network pharmacology-based study was applied to probe the involved mechanisms; western blotting, immunocytochemistry, and luciferase reporter assay was used to further confirm the regulation of magnolol on JAK/STATs signaling pathway; surface plasmon resonance (SPR) assay and molecular docking were applied to manifest affinity with STAT3 and binding sites; overexpression of STAT3 was employed to verify whether magnolol attenuates IL-17A through STAT3 signaling pathway. RESULTS: In vivo, magnolol alleviated loss of body weight and severity of EAE mice; magnolol improved lesions in spinal cords and attenuated CD45 infiltration, and serum cytokines levels; correspondingly, magnolol focused on inhibiting Th17 differentiation and IL-17A expression in splenocyte of EAE mice; moreover, magnolol selectively inhibited p-STAT3(Y705) and p-STAT4(Y693) of both CD4+ and CD8+ T cells in splenocyte of EAE mice. In vitro, magnolol selectively inhibited Th17 differentiation and IL-17A expression without impact on Treg cells; network pharmacology-based study revealed that magnolol perhaps diminished Th17 cell differentiation through regulating STAT family members; western blotting further confirmed that magnolol inhibited p-JAK2(Y1007) and selectively antagonized p-STAT3(Y705) and slightly decreased p-STAT4(Y693); magnolol antagonized both STAT3 nucleus location and transcription activity; magnolol had a high affinity with STAT3 and the specific binding site perhaps to be at SH2 domain; overexpression of STAT3 resulted in failed inhibition of magnolol on IL-17A. CONCLUSION: Magnolol selectively inhibited Th17 differentiation and cytokine expression through selectively blocking of STAT3 resulting in decreased the ratio of Th17/Treg cells for treating MS, suggesting that the potential of magnolol for treating MS as novel STAT3 inhibitor.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Multiple Sclerosis/drug therapy , Th17 Cells , Interleukin-17/metabolism , CD8-Positive T-Lymphocytes/metabolism , Molecular Docking Simulation , Encephalomyelitis, Autoimmune, Experimental/drug therapy , STAT3 Transcription Factor/metabolism , Cell Differentiation , Cytokines/metabolism , Mice, Inbred C57BL , Th1 Cells
10.
Chem Biodivers ; 20(1): e202200900, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36404281

ABSTRACT

Four new xanthone glucosides, 3-hydroxy-2-methoxyxanthone-4-O-ß-D-glucopyranoside (1), 4,8-dihydroxy-2-methoxyxanthone-3-O-ß-D-glucopyranoside (2), 2-methoxyxanthone-5-O-ß-D-glucopyranoside (3), 4-hydroxy-2-methoxyxanthone-3-O-ß-D-glucopyranoside (4), a new phenolic acid, 4,4'-dihydroxy-3,3'-imino-di-benzoic acid monomethyl ester (5), and a new isoquinoline, methyl 6-hydroxy-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (6) were isolated from the fruit of Hypericum patulum. The structural elucidation of the isolated compounds was primarily based on HR-ESI-MS, UV, IR, 1D and 2D NMR. All compounds were evaluated for their inhibitory effect against LPS-induced NO production in RAW 264.7 cells. Compound 2, 3 exhibited moderate inhibitory activity against NO production.


Subject(s)
Hypericum , Hypericum/chemistry , Fruit/chemistry , Glucosides/chemistry , Magnetic Resonance Spectroscopy
11.
Article in English | MEDLINE | ID: mdl-36569344

ABSTRACT

Retinal pericyte migration occurs in the early stage of diabetic retinopathy (DR), which is one of the important causes of pericyte loss. Autophagy has been found to play essential roles in the regulation of many types of cell migration. In this study, we explored the relationship between autophagy and retinal pericyte migration. In diabetic rats, the retinas became thinner, and the level of autophagy in each cell layer increased. In the primary culture of bovine retinal pericytes, we found that advanced glycation end products (AGEs) increased the migratory cell ability without influencing cell viability, which also increased the phosphorylation of focal adhesion kinase (FAK) and the expression of matrix metalloproteinase (MMP)-2 and decreased the expression of vinculin. AGEs-induced retinal pericyte autophagy and the inhibition of autophagy with chloroquine significantly inhibited cell migration, reversed AGEs-induced FAK phosphorylation, and changed vinculin and MMP-2 protein expression. These results provide a new insight into the migration mechanism of retinal pericytes. The early control of autophagy has a potential effect on regulating pericyte migration, which may contribute to keeping the integrity of retinal vessels in DR.

12.
Zhen Ci Yan Jiu ; 47(11): 993-8, 2022 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-36453676

ABSTRACT

OBJECTIVE: To observe the effect of early electroacupuncture(EA) intervention on ionized calcium binding adapter molecule 1 (Iba-1), tyrosine hydroxylase (TH) and tumor necrosis factor-α (TNF-α) in Parkinson's disease (PD) mice, so as to explore its neuroinflammation mechanism in treating PD. METHODS: A total of 24 male C57BL/6J mice (9 weeks old) were randomly divided into control, model and EA groups, with 8 mice in each group. The PD model was established by long-term low dose subcutaneous injection of rotenone. Started at the same time with modeling, EA (2 Hz/100 Hz, 1 mA) was applied to "Shenting"(GV24), bilateral "Tianshu"(LI11), "Quchi"(ST25), and "Shangjuxu"(ST37) for 15 min, once a day for 8 weeks. The motor function was assessed by rotorod test and step length test. The expression levels of Iba-1 and TH proteins in substantia nigra pars compacta (SNpc) was detected by Western blot and immunohistochemistry. The expression level of TNF-α protein in colon tissue was examined by Western blot and immunofluorescence staining. RESULTS: Compared with the control group, the fall latency shortened at 4, 6, and 8 weeks after modeling (P<0.01) and the step length of hind limbs shortened at 5 and 7 weeks after modeling (P<0.01), the expression levels of Iba-1 in SNpc and TNF-α in colon tissue were increased (P<0.01), and the expression level of TH in SNpc was decreased (P<0.01) in the model group. Compared with the model group, the fall latency prolonged at 6 and 8 weeks after modeling (P<0.01) and the step length of hind limbs prolonged at 5 and 7 weeks after modeling (P<0.01), the expression levels of Iba-1 in SNpc and TNF-α in colon tissue were decreased (P<0.01, P<0.05), and the expression level of TH in SNpc was increased (P<0.05, P<0.01) in the EA group. CONCLUSION: Early EA intervention can delay the occurring time of motor disfunction, alleviated the loss of substantia nigra dopaminergic neurons, and exerted a good neuroprotective effect on the degenerative changes in rotenone-induced PD mice, which may be related to its effects in alleviating the intestinal inflammation, inhibiting the activation of microglia, thereby reducing the neuroinflammation.


Subject(s)
Electroacupuncture , Parkinson Disease , Male , Mice , Animals , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/genetics , Parkinson Disease/genetics , Parkinson Disease/therapy , Rotenone , Tyrosine 3-Monooxygenase/genetics
13.
Front Pharmacol ; 13: 993862, 2022.
Article in English | MEDLINE | ID: mdl-36324680

ABSTRACT

JAK/STAT signaling pathways are closely associated with multiple biological processes involved in cell proliferation, apoptosis, inflammation, differentiation, immune response, and epigenetics. Abnormal activation of the STAT pathway can contribute to disease progressions under various conditions. Moreover, tofacitinib and baricitinib as the JAK/STAT inhibitors have been recently approved by the FDA for rheumatology disease treatment. Therefore, influences on the STAT signaling pathway have potential and perspective approaches for diverse diseases. Chinese herbs in traditional Chinese medicine (TCM), which are widespread throughout China, are the gold resources of China and have been extensively used for treating multiple diseases for thousands of years. However, Chinese herbs and herb formulas are characterized by complicated components, resulting in various targets and pathways in treating diseases, which limits their approval and applications. With the development of chemistry and pharmacology, active ingredients of TCM and herbs and underlying mechanisms have been further identified and confirmed by pharmacists and chemists, which improved, to some extent, awkward limitations, approval, and applications regarding TCM and herbs. In this review, we summarized various herbs, herb formulas, natural compounds, and phytochemicals isolated from herbs that have the potential for regulating multiple biological processes via modulation of the JAK/STAT signaling pathway based on the published work. Our study will provide support for revealing TCM, their active compounds that treat diseases, and the underlying mechanism, further improving the rapid spread of TCM to the world.

14.
Molecules ; 27(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36144821

ABSTRACT

Protosappanoside D (PTD) is a new component isolated from the extract of Caesalpinia decapetala for the first time. Its structure was identified as protosappanin B-3-O-ß-D-glucoside by 1H-NMR, 13C-NMR, 2D-NMR and MS techniques. To date, the pharmacological activities, metabolism or pharmacokinetics of PTD has not been reported. Therefore, this research to study the anti-inflammatory activity of PTD was investigated via the LPS-induced RAW264.7 cells model. At the same time, we also used the UHPLC/Q Exactive Plus MS and UPLC-MS/MS methods to study the metabolites and pharmacokinetics of PTD, to calculate its bioavailability for the first time. The results showed that PTD could downregulate secretion of the pro-inflammatory cytokines. In the metabolic study, four metabolites were identified, and the primary degradative pathways in vivo involved the desaturation, oxidation, methylation, alkylation, dehydration, degradation and desugarization. In the pharmacokinetic study, PTD and its main metabolite protosappanin B (PTB) were measured after oral and intravenous administration. After oral administration of PTD, its Tmax was 0.49 h, t1/2z and MRT(0-t) were 3.47 ± 0.78 h and 3.06 ± 0.63 h, respectively. It shows that PTD was quickly absorbed into plasma and it may be eliminated quickly in the body, and its bioavailability is about 0.65%.


Subject(s)
Caesalpinia , Tandem Mass Spectrometry , Administration, Oral , Caesalpinia/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Cytokines , Glucosides/metabolism , Lipopolysaccharides/pharmacology , Oxocins , Plant Extracts/pharmacokinetics , Tandem Mass Spectrometry/methods
15.
Molecules ; 27(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163968

ABSTRACT

As cannabinoid CB2 receptors (CB2R) possess various pharmacological effects-including anti-epilepsy, analgesia, anti-inflammation, anti-fibrosis, and regulation of bone metabolism-without the psychoactive side effects induced by cannabinoid CB1R activation, they have become the focus of research and development of new target drugs in recent years. The present study was intended to (1) establish a double luciferase screening system for a CB2R modulator; (2) validate the agonistic activities of the screened compounds on CB2R by determining cAMP accumulation using HEK293 cells that are stably expressing CB2R; (3) predict the binding affinity between ligands and CB2 receptors and characterize the binding modes using molecular docking; (4) analyze the CB2 receptors-ligand complex stability, conformational behavior, and interaction using molecular dynamics; and (5) evaluate the regulatory effects of the screened compounds on bone metabolism in osteoblasts and osteoclasts. The results demonstrated that the screening system had good stability and was able to screen cannabinoid CB2R modulators from botanical compounds. Altogether, nine CB2R agonists were identified by screening from 69 botanical compounds, and these CB2R agonists exhibited remarkable inhibitory effects on cAMP accumulation and good affinity to CB2R, as evidenced by the molecular docking and molecular dynamics. Five of the nine CB2R agonists could stimulate osteoblastic bone formation and inhibit osteoclastic bone resorption. All these findings may provide useful clues for the development of novel anti-osteoporotic drugs and help elucidate the mechanism underlying the biological activities of CB2R agonists identified from the botanical materials.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Drug Evaluation, Preclinical/methods , Receptor, Cannabinoid, CB2/agonists , Animals , Anti-Inflammatory Agents/pharmacology , Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Modulators/pharmacology , Cannabinoids/pharmacology , China , HEK293 Cells , Humans , Ligands , Mice , Models, Molecular , Molecular Docking Simulation , RAW 264.7 Cells , Receptor, Cannabinoid, CB2/metabolism
16.
Biol Res ; 55(1): 5, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35115050

ABSTRACT

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and downregulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Subject(s)
Electroacupuncture , G-Protein-Coupled Receptor Kinase 2/physiology , Microglia/physiology , Pain Management , Animals , Inflammation/chemically induced , Inflammation/therapy , Mice , Neurons , Pain/chemically induced
17.
J Food Sci ; 87(2): 699-713, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35048369

ABSTRACT

This study investigated the changes in aroma composition and perception of sunflower oils induced by seed roasting using sensory-oriented flavor analysis. Volatile compounds were extracted by solvent-assisted flavor evaporation and headspace solid-phase microextraction. Odorants were characterized by gas chromatography-olfactometry-mass spectrometry and aroma extract dilution analysis. The cold-pressed and roasted sunflower oils contained 13 and 50 odorants, respectively, with the flavor dilution factors between 1 and 256. Fifty-six odorants were newly identified in sunflower oils. Quantification of 26 important odorants by the external standard method revealed apparent changes induced by seed roasting in loss of terpenes, formation of Maillard reaction products, and the increase in lipid oxidation products. The most important odorants (odor active values, OAVs = 1-1857) in the cold-pressed sunflower oil included α-pinene (11,145 µg/kg), ß-pinene (4068 µg/kg), linalool (56 µg/kg), hexanal (541 µg/kg), octanal (125 µg/kg), α-phellandrene (36 µg/kg), and (E)-2-octenal (69 µg/kg), contributing to the raw sunflower seed, woody, green, earthy, and sweet aromas of the oil. The most important contributors (OAVs = 1-884) to the roasted, smoky, and burnt aromas of the roasted sunflower oil were 2- and 3-methylbutanal (6726 and 714 µg/kg), 2,6-dimethylpyrazine (2329 µg/kg), 2,5-dimethylpyrazine (12,228 µg/kg), 2,3-dimethylpyrazine (238 µg/kg), 2,3-pentanedione (1456 µg/kg), 2-pentylfuran (1332 µg/kg), 2,3-dimethyl-5-ethylpyrazine (213 µg/kg), and 1-pentanol (693 µg/kg). Aroma recombination of the key odorants in odorless sunflower oil adequately mimicked the general aroma profiles of sunflower oils. This study provides an important foundation for understanding the relationship between oil processing and aroma molecules of sunflower oils. PRACTICAL APPLICATION: The clear changes observed in the composition and concentrations of key aroma compounds explained the changes in sensory characteristics of sunflower seed oils induced by seed roasting on a molecular basis. Characterizing the key aroma-active composition of sunflower oil and investigating its relationship with oil processing could provide important practical applications for the sunflower oil industry in flavor regulation, quality control, product development, and process optimization.


Subject(s)
Helianthus , Volatile Organic Compounds , Odorants , Oils , Olfactometry , Sunflower Oil
18.
Molecules ; 28(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36615213

ABSTRACT

Huangqin is the dried root of Scutellaria baicalensis Georgi, which has been widely utilized for heat-clearing (Qingre) and dewetting (Zaoshi), heat-killed (Xiehuo) and detoxifying (Jiedu) in the concept of Traditional Chinese Medicine and is used for treating inflammation and cancer in clinical formulas. Neobaicalein (NEO) is of flavonoid isolated from Huangqin and has been reported to possess prominent anti-inflammatory effects in published work. Th17/Treg balance shift to Th17 cells is an essential reason for autoimmune inflammatory diseases. However, the role NEO plays in Th17 and Treg and the underlying mechanism has not been elucidated yet. Network pharmacology-based study revealed that NEO predominantly regulated IL-17 signaling pathway. Moreover, our result shown that NEO (3-30 µmol/L) down-regulated Th17 differentiation and cellular supernatant and intracellular IL-17A level and tumor necrosis factor α production in a concentration-dependent manner. The further mechanism research revealed that NEO also specifically inhibited phosphorylation of STAT3(Tyr725) and STAT4 (Y693) without influence on activation of STAT5 and STAT6 in splenocytes. Immunofluorescence results illuminated that NEO effectively blocked STAT3 translocated into nucleus. Interestingly, NEO at appreciated dose could only inhibit Th17 cell differentiation and have no effect on Treg differentiation. The present study revealed that NEO effectively inhibited Th17 cell differentiation through specifically blocking the activation of STAT3 signaling without inactivation of STAT5 and STAT6. Additional inhibitory effect on activation of STAT4 by NEO also suggested the potential for antagonism against Th1 differentiation. All work suggested that NEO may be a potential candidate for immunoregulation and treating autoimmune inflammatory diseases through inhibiting immune cell viability and T cell differentiation.


Subject(s)
Autoimmune Diseases , Th17 Cells , Humans , STAT5 Transcription Factor/metabolism , T-Lymphocytes, Regulatory , Cell Differentiation , Signal Transduction , STAT3 Transcription Factor/metabolism , Autoimmune Diseases/metabolism
19.
Anesth Analg ; 134(1): 204-215, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34652301

ABSTRACT

BACKGROUND: The main symptoms of chemotherapy-induced peripheral neuropathy (CIPN) include pain and numbness. Neuronal G protein-coupled receptor kinase 2 (GRK2) plays an important role in various pain models. Cisplatin treatment can induce the activation of proinflammatory microglia in spinal cord. The purpose of this study was to investigate the role of spinal neuronal GRK2 in cisplatin-induced CIPN and in the prevention of CIPN by electroacupuncture (EA). METHODS: The pain and sensory deficit behaviors of mice were examined by von Frey test and adhesive removal test. The expression of neuronal GRK2 in the spinal cord is regulated by intraspinal injection of adeno-associated virus (AAV) containing neuron-specific promoters. The protein levels of GRK2, triggering receptor expressed on myeloid cells 2 (TREM2), and DNAX-activating protein of 12 kDa (DAP12) in spinal dorsal horn were detected by Western blot, the density of intraepidermal nerve fibers (IENFs) was detected by immunofluorescence, and microglia activation were evaluated by real-time polymerase chain reaction (PCR). RESULTS: In this study, cisplatin treatment led to the decrease of GRK2 expression in the dorsal horn of spinal cord. Overexpression of neuronal GRK2 in spinal cord by intraspinal injection of an AAV vector expressing GRK2 with human synapsin (hSyn) promotor significantly inhibited the loss of IENFs and alleviated the mechanical pain and sensory deficits induced by cisplatin. Real-time PCR analysis showed that the overexpression of neuronal GRK2 significantly inhibited the messenger RNA (mRNA) upregulation of proinflammatory cytokine interleukin (IL)-1ß, IL-6, inducible nitric oxide synthase (iNOS), and M1 microglia marker cluster of differentiation (CD)16 induced by cisplatin. Furthermore, the TREM2 and DAP12, which has been demonstrated to play a role in microglia activation and in the development of CIPN, were also downregulated by overexpression of neuronal GRK2 in this study. Interestingly, preventive treatment with EA completely mimics the effect of overexpression of neuronal GRK2 in the spinal cord in this mouse model of cisplatin-induced CIPN. EA increased GRK2 level in spinal dorsal horn after cisplatin treatment. Intraspinal injection of AAV vector specifically downregulated neuronal GRK2, completely reversed the regulatory effect of EA on CIPN and microglia activation. All these indicated that the neuronal GRK2 mediated microglial activation contributed to the process of CIPN. CONCLUSIONS: Neuronal GRK2 in the spinal cord contributed to the preventive effect of EA on CIPN. The neuronal GRK2 may be a potential target for CIPN intervention.


Subject(s)
Cisplatin , Electroacupuncture , G-Protein-Coupled Receptor Kinase 2/genetics , Peripheral Nervous System Diseases/chemically induced , Spinal Cord/pathology , Animals , Behavior, Animal , Dependovirus , Humans , Hyperalgesia/metabolism , Inflammation , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Nerve Fibers , Neuralgia/metabolism , Neurons/metabolism , Nitric Oxide Synthase Type II/metabolism , Pain , Spinal Cord Dorsal Horn/metabolism , Time Factors
20.
Biol. Res ; 55: 5-5, 2022. graf, ilus
Article in English | LILACS | ID: biblio-1383910

ABSTRACT

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and down-regulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Subject(s)
Animals , Mice , Electroacupuncture , Microglia/physiology , G-Protein-Coupled Receptor Kinase 2/physiology , Pain Management , Pain/chemically induced , Inflammation/chemically induced , Inflammation/therapy , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL