Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Hazard Mater ; 466: 133656, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38306832

ABSTRACT

Pesticides and microplastics (MPs) derived from mulch film in agricultural soil can independently impact soil ecology, yet the consequences of their combined exposure remain unclear. Therefore, the effects of simultaneous exposure to commonly used pesticides (imidacloprid and flumioxazin) and aged mulch film-derived MPs on soil microorganisms and element cycles in cotton fields were investigated. The combined exposure influenced soil microorganisms, alongside processes related to carbon, nitrogen, and phosphorus cycles, exhibiting effects that were either neutralized or enhanced compared to individual exposures. The impact of pesticides in combined exposure was notably more significant and played a dominant role than that of MPs. Specifically, combined exposure intensified changes in soil bacterial community and symbiotic networks. The combined exposure neutralized NH4+, NO3-, DOC, and A-P contents, shifting from 0.33 % and 40.23 % increase in MPs and pesticides individually to a 40.24 % increase. Moreover, combined exposure resulted in the neutralization or amplification of the nitrogen-fixing gene nifH, nitrifying genes (amoA and amoB), and denitrifying genes (nirS and nirK), the carbon cycle gene cbbLG and the phosphorus cycle gene phoD from 0.48 and 2.57-fold increase to a 2.99-fold increase. The combined exposure also led to the neutralization or enhancement of carbon and nitrogen cycle functional microorganisms, shifting from a 1.53-fold inhibition and 10.52-fold increase to a 6.39-fold increase. These findings provide additional insights into the potential risks associated with combined pesticide exposure and MPs, particularly concerning soil microbial communities and elemental cycling processes.


Subject(s)
Microbiota , Pesticides , Pesticides/toxicity , Soil , Microplastics , Plastics/toxicity , Carbon , Nitrogen , Phosphorus , Soil Microbiology
2.
Nucleic Acids Res ; 52(D1): D1110-D1120, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37904598

ABSTRACT

Traditional Chinese medicine (TCM) is increasingly recognized and utilized worldwide. However, the complex ingredients of TCM and their interactions with the human body make elucidating molecular mechanisms challenging, which greatly hinders the modernization of TCM. In 2016, we developed BATMAN-TCM 1.0, which is an integrated database of TCM ingredient-target protein interaction (TTI) for pharmacology research. Here, to address the growing need for a higher coverage TTI dataset, and using omics data to screen active TCM ingredients or herbs for complex disease treatment, we updated BATMAN-TCM to version 2.0 (http://bionet.ncpsb.org.cn/batman-tcm/). Using the same protocol as version 1.0, we collected 17 068 known TTIs by manual curation (with a 62.3-fold increase), and predicted ∼2.3 million high-confidence TTIs. In addition, we incorporated three new features into the updated version: (i) it enables simultaneous exploration of the target of TCM ingredient for pharmacology research and TCM ingredients binding to target proteins for drug discovery; (ii) it has significantly expanded TTI coverage; and (iii) the website was redesigned for better user experience and higher speed. We believe that BATMAN-TCM 2.0, as a discovery repository, will contribute to the study of TCM molecular mechanisms and the development of new drugs for complex diseases.


Subject(s)
Databases, Pharmaceutical , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Network Pharmacology , Humans , Drugs, Chinese Herbal/chemistry , Proteins
3.
J Colloid Interface Sci ; 641: 113-125, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36924541

ABSTRACT

Currently, finite intratumoral H2O2 content has restricted the efficacy of chemodynamic therapy (CDT). Here, Cu-Ni0.85Se@PEG nanoparticles are constructed to display intracellular NIR-II photocatalytic H2O2 supplement. The formation mechanism is explored to discover that H2O2 generation is dominated by photo-excited electrons and dissolved O2 via a typical sequential single-electron transfer process. Both density functional theory calculation and experimental data confirm its metallic feature that endows the great NIR-II absorption and photothermal conversion efficiency (59.6 %, 1064 nm). Furthermore, the photothermal-assisting consecutive interband and intraband transition in metallic catalyst contributes to the high redox capacity and efficient separation/transfer ability of photo-generated charges, boosting H2O2 production under 1064 nm laser irradiation. In addition, Cu-Ni0.85Se@PEG possess mimic peroxidase and catalase activity, leading to in-situ H2O2 activation to produce ∙OH and O2 for the enhanced CDT and hypoxia relief. What's more, the nanomaterials reveal novel biodegradation that is derived from oxidation from insolvable selenide into soluble selenate, resulting in elimination via feces and urine within 2 weeks. Synergistic CDT and photothermal therapy (PTT) further lead to great tumor inhibition and immune response for anti-tumor. The antitumor mechanism and the potential biological process also are investigated by high-throughput sequencing of expressed transcripts (RNAseq). The great treatment performance is responsible for the regulation of related oxidative stress and stimulus genes to induce organelle (mitochondrial) and membrane dysfunction. Besides, the synergistic therapy also can efficiently evoke immune response to further fight against tumor.


Subject(s)
Nanoparticles , Nanostructures , Neoplasms , Humans , Copper/pharmacology , Hydrogen Peroxide/pharmacology , Nickel , Cell Line, Tumor
4.
Biomater Adv ; 144: 213168, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455499

ABSTRACT

Intratumoral hypoxia, which is in favour of cancer cell proliferation, invasion and metastasis, also inhibits photodynamic therapy (PDT) badly. Herein, second near-infrared (NIR-II) photocatalytic O2 production is established to realize hypoxia relief. MoS2/Co3S4@PEG (MSCs@PEG) nanoflowers (100-150 nm) are prepared via a two-step hydrothermal method. These samples possess high NIR-II harvest and photothermal conversion (39.8 %, 1064 nm) ability. That not only reveals photothermal therapy (PTT) but also lifts the thermal energy of nanomaterials to replenish extra energy, making sure the co-excitation of MoS2 (1.14 eV) and Co3S4 (1.40 eV) by low-energy NIR-II (1064 nm, 1.16 eV) laser. The investigation of band structure further displays the Z-Scheme characterization of MSCs heterostructure. These photo-excited holes/electrons hold great redox ability to form O2 (water splitting) and reactive oxygen species (ROS), simultaneously. In addition, MSC-2@PEG can be served to mimic catalase, peroxidase, and glutathione (GSH) oxidase to further boost oxidative stress. It is noted that heterostructure discovers the greater nanozyme activity, attributing to the lower resistance for charge transfer. Moreover, MSC-2@PEG displays a novel biodegradation ability to induce the elimination via urine and faeces within 14 days. Given the superparamagnetic and photothermal effect, the nanocomposite can be used as magnetic resonance and photothermal imaging (MRI and PTI) contrast. Associated with dual-imaging, intracellular O2 supplementation, and synergistic chemotherapy (CDT)/PTT/PDT, MSC-2@PEG possess great tumor inhibition that also efficiently motivates immune response for anticancer.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Molybdenum/chemistry , Molybdenum/therapeutic use , Photochemotherapy/methods , Phototherapy , Neoplasms/drug therapy , Hypoxia/drug therapy
5.
Biomater Adv ; 136: 212778, 2022 May.
Article in English | MEDLINE | ID: mdl-35929316

ABSTRACT

The efficacy of phototherapy is dependent on intracellular O2 concentration and NIR harvest. Here, a simple nanoplatform with nanoenzyme mediated phototherapy enhances anticancer capacity. Mn-CoS@carbon (CMS/C) di-shell hollow nanospheres (50 nm) are synthesized successfully through two-step consecutive Kirkendall process. The nanoheterostructure reveals the higher near-infrared (NIR) light absorption and photothermal conversion rate of 66.3% than pure CoS (45.5%), owing to the decreased band gap and multi-reflection of incident light in the hollow structure. And CMS/C reveals the reactive oxygen species (ROS) production and nanoenzyme activities (mimic peroxidase and catalase) that are 6 and 2 times than those of pure CoS. Furthermore, the nanoenzyme exhibits NIR-enhanced abilities to produce more OH and O2 facilitating anticancer. In addition, it also depletes glutathione (mimicking glutathione oxidase), to disturb intracellular redox-homeostasis, boosting the increase of oxidative stress. With grafting bovine serum albumin (BSA) and drug loading, CMS/C@BSA-Dox integrated multi-therapy make the great anticancer effect in vitro and vivo. After that, the nanocomposite could be biodegraded and eliminated via urinary and feces within 14 days. Based on this work, the efficient charge-separation can be designed to reveal high performance nanoenzymes as well as photosensitizers for anticancer.


Subject(s)
Doxorubicin , Nanospheres , Carbon , Doxorubicin/chemistry , Nanospheres/chemistry , Phototherapy , Serum Albumin, Bovine/chemistry
6.
Biomater Adv ; 134: 112546, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35523649

ABSTRACT

In this work, the plasmonic Bi@N-Carbon@PEG-DOX nanocomposites were constructed to integrate the imaging and synergistic therapy in one nanoplatform. Here, Bi nanoparticles were encapsulated into the N-doped carbon nanomaterials via a simple solvothermal method. The accumulated adjacent semimetal Bi nanoparticles in Bi@N­carbon enhanced the local surface plasmon resonance (LSPR) to make the great NIR harvest and high photothermal converting efficiency (52.3%, Bi@C-2). And that also was confirmed by the Finite Difference Time Domain (FDTD) calculation. Moreover, the LSPR would induce the hot charges (polarization charges), which were captured by O2 and H2O molecules to form ROS for photodynamic therapy (PDT). And the heterostructure of Bi and N­carbon further improved the effective segregation of the hot charges, making the 6.9 times ROS production (Bi@C-2) in comparing with pure Bi sample. In view of the ultrahigh X-ray attenuation coefficient of Bi and great photothermal effect, Bi@N-Carbon@PEG possessed the outstanding computerized tomography (CT) and photothermal imaging capacity. Meanwhile, they also exhibited the favourable biodegradation ability, inducing the elimination via urine and feces within 14 day. The integration of the multi-model (CT and Thermal) imaging and the PTT/PDT/chemotherapy makes Bi@N­carbon@PEG-DOX to be a potential candidate for cancer treatment.


Subject(s)
Nanoparticles , Photochemotherapy , Carbon , Nanoparticles/therapeutic use , Phototherapy , Reactive Oxygen Species
7.
J Colloid Interface Sci ; 607(Pt 1): 1-15, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34500412

ABSTRACT

The intracellular O2-supply not only can relieve tumor hypoxia but also enhance the effects of photodynamic therapy (PDT). In this work, metallic Mo2C@N-carbon@PEG nanoparticles were constructed to reveal the near infrared (NIR)-photocatalytic O2 generation and promote photodynamic therapy (PDT). Here, (NH4)6Mo7O24·4H2O nanorods and urea were adopted as resources that were calcined to obtain Mo2C@N-carbon nanoparticles (20 nm). All samples displayed high NIR absorption as well as photothermal conversion efficiency of up to 52.7 % (Mo2C@N-Carbon-3@PEG). The density functional theory calculations demonstrated the metallic characteristic of Mo2C and that the consecutive interband/intraband charge-transition was responsible for the high NIR harvest and redox ability of electron-hole pairs, making the NIR-photocatalytic O2 and reactive oxygen species (ROS) generation. In comparison with the pure Mo2C, the heterostructure displayed twice the performance due to the enhanced charge-segregation between Mo2C and N-carbon. Given the high X-ray absorption coefficient and photothermal ability, the nanocomposite could be used in novel computer tomography and photothermal imaging contrast. Furthermore, the novel biodegradation and metabolism behaviors of nanocomposites were investigated, which were reflected as elimination from the body (mouse) via feces and urine within 14 days. The as-synthesized Mo2C@N-Carbon@PEG nanocomposites integrated the dual-model imaging, intracellular O2-supply, and phototherapy into one nanoplatform, revealing its potential for anti-cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Carbon , Cell Line, Tumor , Mice , Molybdenum , Neoplasms/drug therapy , Oxygen , Phototherapy
SELECTION OF CITATIONS
SEARCH DETAIL