Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Microbiome ; 10(1): 9, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35045871

ABSTRACT

BACKGROUND: Short-chain fatty acids (SCFAs) produced by the gut microbiota have beneficial anti-inflammatory and gut homeostasis effects and prevent type 1 diabetes (T1D) in mice. Reduced SCFA production indicates a loss of beneficial bacteria, commonly associated with chronic autoimmune and inflammatory diseases, including T1D and type 2 diabetes. Here, we addressed whether a metabolite-based dietary supplement has an impact on humans with T1D. We conducted a single-arm pilot-and-feasibility trial with high-amylose maize-resistant starch modified with acetate and butyrate (HAMSAB) to assess safety, while monitoring changes in the gut microbiota in alignment with modulation of the immune system status. RESULTS: HAMSAB supplement was administered for 6 weeks with follow-up at 12 weeks in adults with long-standing T1D. Increased concentrations of SCFA acetate, propionate, and butyrate in stools and plasma were in concert with a shift in the composition and function of the gut microbiota. While glucose control and insulin requirements did not change, subjects with the highest SCFA concentrations exhibited the best glycemic control. Bifidobacterium longum, Bifidobacterium adolescentis, and vitamin B7 production correlated with lower HbA1c and basal insulin requirements. Circulating B and T cells developed a more regulatory phenotype post-intervention. CONCLUSION: Changes in gut microbiota composition, function, and immune profile following 6 weeks of HAMSAB supplementation were associated with increased SCFAs in stools and plasma. The persistence of these effects suggests that targeting dietary SCFAs may be a mechanism to alter immune profiles, promote immune tolerance, and improve glycemic control for the treatment of T1D. TRIAL REGISTRATION: ACTRN12618001391268. Registered 20 August 2018, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375792 Video Abstract.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Microbiota , Animals , Diabetes Mellitus, Type 2/microbiology , Dietary Supplements , Fatty Acids, Volatile , Humans , Mice
2.
Sci Rep ; 10(1): 17919, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087738

ABSTRACT

Increasing evidence supports a role for the gut microbiota in the development of cardiovascular diseases such as hypertension and its progression to heart failure (HF). Dietary fibre has emerged as a modulator of the gut microbiota, resulting in the release of gut metabolites called short-chain fatty acids (SCFAs), such as acetate. We have shown previously that fibre or acetate can protect against hypertension and heart disease in certain models. HF is also commonly caused by genetic disorders. In this study we investigated whether the intake of fibre or direct supplementation with acetate could attenuate the development of HF in a genetic model of dilated cardiomyopathy (DCM) due to overexpression of the cardiac specific mammalian sterile 20-like kinase (Mst1). Seven-week-old male mice DCM mice and littermate controls (wild-type, C57BL/6) were fed a control diet (with or without supplementation with 200 mM magnesium acetate in drinking water), or a high fibre diet for 7 weeks. We obtained hemodynamic, morphological, flow cytometric and gene expression data. The gut microbiome was characterised by 16S rRNA amplicon sequencing. Fibre intake was associated with a significant shift in the gut microbiome irrespective of mouse genotype. However, neither fibre or supplementation with acetate were able to attenuate cardiac remodelling or cardiomyocyte apoptosis in Mst1 mice. Furthermore, fibre and acetate did not improve echocardiographic or hemodynamic parameters in DCM mice. These data suggest that although fibre modulates the gut microbiome, neither fibre nor acetate can override a strong genetic contribution to the development of heart failure in the Mst1 model.


Subject(s)
Dietary Fiber/administration & dosage , Dietary Fiber/pharmacology , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Genetic Predisposition to Disease , Heart Failure/genetics , Heart Failure/microbiology , Prebiotics/administration & dosage , Acetates/administration & dosage , Acetates/metabolism , Animals , Apoptosis , Disease Models, Animal , Fatty Acids, Volatile/metabolism , Heart Failure/etiology , Heart Failure/prevention & control , Male , Mice, Inbred C57BL , Myocytes, Cardiac , Protein Serine-Threonine Kinases/metabolism , Ventricular Remodeling
3.
Nat Commun ; 10(1): 3031, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292453

ABSTRACT

Maternal immune dysregulation seems to affect fetal or postnatal immune development. Preeclampsia is a pregnancy-associated disorder with an immune basis and is linked to atopic disorders in offspring. Here we show reduction of fetal thymic size, altered thymic architecture and reduced fetal thymic regulatory T (Treg) cell output in preeclamptic pregnancies, which persists up to 4 years of age in human offspring. In germ-free mice, fetal thymic CD4+ T cell and Treg cell development are compromised, but rescued by maternal supplementation with the intestinal bacterial metabolite short chain fatty acid (SCFA) acetate, which induces upregulation of the autoimmune regulator (AIRE), known to contribute to Treg cell generation. In our human cohorts, low maternal serum acetate is associated with subsequent preeclampsia, and correlates with serum acetate in the fetus. These findings suggest a potential role of acetate in the pathogenesis of preeclampsia and immune development in offspring.


Subject(s)
Acetates/blood , Fetus/immunology , Pre-Eclampsia/immunology , Prenatal Exposure Delayed Effects/immunology , T-Lymphocytes, Regulatory/immunology , Acetates/administration & dosage , Acetates/immunology , Acetates/metabolism , Adult , Animals , Animals, Newborn , Case-Control Studies , Child Development , Child, Preschool , Dietary Supplements , Female , Fetus/cytology , Fetus/diagnostic imaging , Gastrointestinal Microbiome/immunology , Germ-Free Life/immunology , Humans , Immune Tolerance/immunology , Infant , Infant, Newborn , Longitudinal Studies , Maternal-Fetal Exchange/immunology , Mice , Organ Size/immunology , Pre-Eclampsia/blood , Pre-Eclampsia/diagnosis , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/prevention & control , Prospective Studies , Thymus Gland/cytology , Thymus Gland/diagnostic imaging , Thymus Gland/growth & development , Thymus Gland/immunology , Transcription Factors/immunology , Transcription Factors/metabolism , Ultrasonography, Prenatal , Young Adult , AIRE Protein
4.
Mol Metab ; 6(1): 48-60, 2017 01.
Article in English | MEDLINE | ID: mdl-28123937

ABSTRACT

OBJECTIVE: Dietary supplementation with fermentable carbohydrate protects against body weight gain. Fermentation by the resident gut microbiota produces short-chain fatty acids, which act at free fatty acid receptor 2 (FFAR2). Our aim was to test the hypothesis that FFAR2 is important in regulating the beneficial effects of fermentable carbohydrate on body weight and to understand the role of gut hormones PYY and GLP-1. METHODS: Wild-type or Ffar2-/- mice were fed an inulin supplemented or control diet. Mice were metabolically characterized and gut hormone concentrations, enteroendocrine cell density measurements were carried out. Intestinal organoids and colonic cultures were utilized to substantiate the in vivo findings. RESULTS: We provide new mechanistic insight into how fermentable carbohydrate regulates metabolism. Using mice that lack FFAR2, we demonstrate that the fermentable carbohydrate inulin acts via this receptor to drive an 87% increase in the density of cells that produce the appetite-suppressing hormone peptide YY (PYY), reduce food intake, and prevent diet-induced obesity. CONCLUSION: Our results demonstrate that FFAR2 is predominantly involved in regulating the effects of fermentable carbohydrate on metabolism and does so, in part, by enhancing PYY cell density and release. This highlights the potential for targeting enteroendocrine cell differentiation to treat obesity.


Subject(s)
Dietary Carbohydrates/metabolism , Peptide YY/metabolism , Receptors, Cell Surface/metabolism , Animals , Body Weight , Colon/cytology , Dietary Supplements , Eating , Fatty Acids, Volatile/metabolism , Fermentation , Fermented Foods , Gastrointestinal Hormones/metabolism , Gastrointestinal Microbiome/physiology , Glucagon-Like Peptide 1/metabolism , Inulin/metabolism , Male , Mice , Mice, Knockout , Obesity/metabolism , Receptors, Cell Surface/physiology , Weight Gain
5.
Circulation ; 135(10): 964-977, 2017 Mar 07.
Article in English | MEDLINE | ID: mdl-27927713

ABSTRACT

BACKGROUND: Dietary intake of fruit and vegetables is associated with lower incidence of hypertension, but the mechanisms involved have not been elucidated. Here, we evaluated the effect of a high-fiber diet and supplementation with the short-chain fatty acid acetate on the gut microbiota and the prevention of cardiovascular disease. METHODS: Gut microbiome, cardiorenal structure/function, and blood pressure were examined in sham and mineralocorticoid excess-treated mice with a control diet, high-fiber diet, or acetate supplementation. We also determined the renal and cardiac transcriptome of mice treated with the different diets. RESULTS: We found that high consumption of fiber modified the gut microbiota populations and increased the abundance of acetate-producing bacteria independently of mineralocorticoid excess. Both fiber and acetate decreased gut dysbiosis, measured by the ratio of Firmicutes to Bacteroidetes, and increased the prevalence of Bacteroides acidifaciens. Compared with mineralocorticoid-excess mice fed a control diet, both high-fiber diet and acetate supplementation significantly reduced systolic and diastolic blood pressures, cardiac fibrosis, and left ventricular hypertrophy. Acetate had similar effects and markedly reduced renal fibrosis. Transcriptome analyses showed that the protective effects of high fiber and acetate were accompanied by the downregulation of cardiac and renal Egr1, a master cardiovascular regulator involved in cardiac hypertrophy, cardiorenal fibrosis, and inflammation. We also observed the upregulation of a network of genes involved in circadian rhythm in both tissues and downregulation of the renin-angiotensin system in the kidney and mitogen-activated protein kinase signaling in the heart. CONCLUSIONS: A diet high in fiber led to changes in the gut microbiota that played a protective role in the development of cardiovascular disease. The favorable effects of fiber may be explained by the generation and distribution of one of the main metabolites of the gut microbiota, the short-chain fatty acid acetate. Acetate effected several molecular changes associated with improved cardiovascular health and function.


Subject(s)
Desoxycorticosterone Acetate/pharmacology , Dietary Fiber/pharmacology , Gastrointestinal Microbiome/drug effects , Hypertension/prevention & control , Animals , Bacteria/genetics , Bacteria/isolation & purification , Blood Pressure/drug effects , Desoxycorticosterone Acetate/therapeutic use , Dietary Fiber/therapeutic use , Dietary Supplements , Disease Models, Animal , Fibrosis , Gastrointestinal Tract/microbiology , Hypertension/pathology , Hypertension/veterinary , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Organ Size/drug effects , Principal Component Analysis , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Transcriptome/drug effects
6.
Immunol Rev ; 245(1): 164-76, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22168419

ABSTRACT

Certain autoimmune diseases as well as asthma have increased in recent decades, particularly in developed countries. The hygiene hypothesis has been the prevailing model to account for this increase; however, epidemiology studies also support the contribution of diet and obesity to inflammatory diseases. Diet affects the composition of the gut microbiota, and recent studies have identified various molecules and mechanisms that connect diet, the gut microbiota, and immune responses. Herein, we discuss the effects of microbial metabolites, such as short chain fatty acids, on epithelial integrity as well as immune cell function. We propose that dysbiosis contributes to compromised epithelial integrity and disrupted immune tolerance. In addition, dietary molecules affect the function of immune cells directly, particularly through lipid G-protein coupled receptors such as GPR43.


Subject(s)
Bacteria/immunology , Bacterial Infections/immunology , Fatty Acids/immunology , Immune System Diseases/immunology , Intestinal Mucosa/immunology , Animals , Bacteria/metabolism , Bacterial Infections/complications , Bacterial Infections/microbiology , Diet , Dietary Supplements , Fatty Acids/metabolism , Humans , Immune System Diseases/etiology , Immune System Diseases/microbiology , Immune Tolerance , Inflammation/immunology , Inflammation/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Receptors, G-Protein-Coupled/metabolism
7.
Nature ; 461(7268): 1282-6, 2009 Oct 29.
Article in English | MEDLINE | ID: mdl-19865172

ABSTRACT

The immune system responds to pathogens by a variety of pattern recognition molecules such as the Toll-like receptors (TLRs), which promote recognition of dangerous foreign pathogens. However, recent evidence indicates that normal intestinal microbiota might also positively influence immune responses, and protect against the development of inflammatory diseases. One of these elements may be short-chain fatty acids (SCFAs), which are produced by fermentation of dietary fibre by intestinal microbiota. A feature of human ulcerative colitis and other colitic diseases is a change in 'healthy' microbiota such as Bifidobacterium and Bacteriodes, and a concurrent reduction in SCFAs. Moreover, increased intake of fermentable dietary fibre, or SCFAs, seems to be clinically beneficial in the treatment of colitis. SCFAs bind the G-protein-coupled receptor 43 (GPR43, also known as FFAR2), and here we show that SCFA-GPR43 interactions profoundly affect inflammatory responses. Stimulation of GPR43 by SCFAs was necessary for the normal resolution of certain inflammatory responses, because GPR43-deficient (Gpr43(-/-)) mice showed exacerbated or unresolving inflammation in models of colitis, arthritis and asthma. This seemed to relate to increased production of inflammatory mediators by Gpr43(-/-) immune cells, and increased immune cell recruitment. Germ-free mice, which are devoid of bacteria and express little or no SCFAs, showed a similar dysregulation of certain inflammatory responses. GPR43 binding of SCFAs potentially provides a molecular link between diet, gastrointestinal bacterial metabolism, and immune and inflammatory responses.


Subject(s)
Chemotactic Factors/metabolism , Inflammation/metabolism , Inflammation/microbiology , Intestines/microbiology , Receptors, G-Protein-Coupled/metabolism , Acetates/therapeutic use , Animals , Arthritis/metabolism , Cells, Cultured , Colitis/drug therapy , Colitis/metabolism , Colitis/microbiology , Fatty Acids, Volatile/metabolism , Germ-Free Life , Humans , Inflammation/drug therapy , Metagenome , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Oligonucleotide Array Sequence Analysis , Protein Array Analysis , Receptors, G-Protein-Coupled/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL