Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
J Anim Sci Biotechnol ; 14(1): 27, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36922887

ABSTRACT

BACKGROUND: Docosahexaenoic acid (DHA) and calcidiol could be enriched in chicken for improving public nutrition and health. It remains unclear if supranutritional levels of DHA and calcidiol impair growth performance or metabolism of broiler chickens. This study was to determine singular and combined effects of high levels of supplemental DHA-rich microalgal biomass or oil and calcidiol on growth performance, concentrations of triglycerides, cholesterol, and nonesterfied fatty acids in plasma, liver, breast, and thigh, and biophysical properties of tibia. METHODS: In Exp. 1, 144 day-old Cornish chicks were divided into 4 groups (6 cages/treatment, 6 birds/cage), and were fed a corn-soybean meal basal diet (BD), BD + 10,000 IU calcidiol/kg (BD + Cal), BD + 1% DHA-rich Aurantiochytrium (1.2 g DHA/kg; BD + DHA), and BD + Cal + DHA for 6 weeks. In Exp. 2, 180 day-old chicks were divided into 5 groups, and were fed: BD, BD + DHA (0.33% to 0.66% oil, 1.5 to 3.0 g DHA/kg), BD + DHA + EPA (1.9% to 3.8% eicosapentaenoic acid-rich Nannochloropsis sp. CO18, 0.3 to 0.6 g EPA/kg), BD + DHA + calcidiol (6000 to 12,000 IU/kg diet), and BD + DHA + EPA + Cal for 6 weeks. RESULTS: Birds fed BD + Cal diet in Exp. 1 and BD + DHA + EPA diet in Exp. 2 had higher (P < 0.05) body weight gain (10%-11%) and gain:feed ratio (7%), and lower (P < 0.05) total cholesterol and triglyceride concentrations in plasma (18%-54%), liver (8%-26%), breast (19%-26%), and thigh (10%-19%), respectively, over the controls. The two diets also improved (P < 0.05) tibial breaking strength (8%-24%), total bone volume (2%-13%), and (or) bone mineral density (3%-19%) of chickens. CONCLUSION: Supranutrition of dietary calcidiol and DHA alone or together did not produce adverse effects, but led to moderate improvements of growth performance, lipid profiles of plasma and muscle, and bone properties of broiler chickens.

2.
J Anim Sci ; 99(1)2021 01 01.
Article in English | MEDLINE | ID: mdl-33515472

ABSTRACT

Dietary fish oil supplementation provides n-3 long-chained polyunsaturated fatty acids for supporting fish growth and metabolism and enriching fillet with eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; c22:6n-3). Two experiments were performed as a 3 × 2 factorial arrangement of dietary treatments for 16 wk to determine effects and mechanisms of replacing 0%, 50%, and 100% fish oil with DHA-rich microalgae in combination with synthetic vs. microalgal source of astaxanthin in plant protein meal (PM)- or fishmeal (FM)- based diets for juvenile rainbow trout (Oncorhynchus mykiss). Fish (22 ± 0.26 g) were stocked at 17/tank and 3 tanks/diet. The 100% fish oil replacement impaired (P < 0.0001) growth performance, dietary protein and energy utilization, body indices, and tissue accumulation of DHA and EPA in both diet series. The impairments were associated (P < 0.05) with upregulation of hepatic gene expression related to growth (ghr1and igf1) and biosynthesis of DHA and EPA (fads6 and evol5) that was more dramatic in the FM than PM diet-fed fish, and more pronounced on tissue EPA than DHA concentrations. The source of astaxanthin exerted interaction effects with the fish oil replacement on several measures including muscle total cholesterol concentrations. In conclusion, replacing fish oil by the DHA-rich microalgae produced more negative metabolic responses than the substitution of synthetic astaxanthin by the microalgal source in juvenile rainbow trout fed 2 types of practical diets.


Subject(s)
Microalgae , Oncorhynchus mykiss , Animals , Diet/veterinary , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fish Oils , Xanthophylls
3.
Poult Sci ; 99(10): 4853-4860, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32988522

ABSTRACT

This research was to determine effects of supplemental dietary microalgal astaxanthin (AST) on hepatic gene expression and protein production of redox enzymes, heat shock proteins (HSPs), cytokines, and lipid metabolism in broilers (BR) and laying hens (LH) under high ambient temperatures. A total of 240 (day old) Cornish male BR and 50 (19 wk old) White Leghorn Shavers LH were allotted in 5 dietary treatments with 6 and 10 cages/treatment (8 BR or 1 LH/cage), respectively. The birds were fed corn-soybean meal basal diets supplemented with microalgal (Haematococcus pluvialis) AST at 0, 10, 20, 40, and 80 mg/kg diet for 6 wk. Supplemental AST to the BR diet linearly decreased (P < 0.10, R2 = 0.18-0.36) hepatic mRNA levels of several redox status-controlling genes, heat shock protein 70 (HSP70), heat shock transcription factor 1 (HSTF1), c-Jun N-terminal kinase 1 (JNK1), tumor necrosis factor-α, and sterol regulatory element-binding protein 1 (SREBP1). The supplementation linearly elevated (P = 0.04, R2 = 0.20) diacylglycerol acyltransferase 2 (DGAT2) mRNA level and produced quadratic changes (P < 0.10, R2 = 0.15-0.47) in mRNA levels of glutathione S-transferase (GST), serine/threonine kinase (AKT1), P38 mitogen-activated protein kinase (P38MAKP), lipid metabolism-controlling genes, and the protein production of HSP90 and P38MAPK in the liver. Supplementing AST to the LH diets linearly decreased (P < 0.10, R2 = 0.18-0.56) mRNA levels of GST, HSF1, JNK1, and interleukin 10; lipogenesis genes; and JNK1 protein production. However, supplemental dietary AST produced quadratic changes (P < 0.10, R2 = 0.26-0.72) in mRNA levels of most antioxidant-, stress-responsive, and lipid metabolism-related genes in the liver of LH. In conclusion, supplemental dietary AST affected the hepatic gene expression and protein production related to redox status, heat stress and inflammation, and lipid metabolism in both BR and LH. The impacts varied with the chicken type and demonstrated linear and quadratic regressions with the inclusion levels of AST.


Subject(s)
Chickens , Dietary Supplements , Hot Temperature , Inflammation , Lipid Metabolism , Microalgae , Animal Feed/analysis , Animals , Diet/veterinary , Female , Inflammation/veterinary , Lipid Metabolism/drug effects , Male , Xanthophylls/pharmacology
4.
J Anim Sci ; 98(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32207523

ABSTRACT

Broilers stocked in high densities may be prone to oxidative and inflammatory insults, resulting in impaired health status, growth performance, and meat quality. This study was to determine if 30% extra supplemental dl-methionine alleviated or prevented those adverse effects of a higher stocking density in broiler chickens. A total of 560 male Cornish Cross cockerels (day old) were divided into four groups: two stocking densities (9 and 12 birds/m2) and two supplementations of methionine (grower: 2.90 or 3.77 g/kg and finisher: 2.60 or 3.38 g/kg). Growth performance was recorded weekly. Blood and tissues were sampled at the end of each period. High stocking density decreased (P < 0.05) body weight and growth performance of growers and (or) finishers. Those differences were partially attenuated by the extra methionine supplementation. The high methionine elevated (P < 0.05) glutathione (GSH) concentration in the thigh at both ages (> 24%). The high stocking density elevated (>28%, P < 0.05) glutathione concentration in the plasma, breast, and thigh of growers, but decreased (P < 0.05) it in the liver of growers and thigh of finishers. Interaction effects (P < 0.05) between dietary methionine and stocking density were found on activities of the antioxidant enzyme glutathione S-transferase in the liver of growers and breast, thigh, and adipose tissue of finishers. The interaction effect was also found on activities of glutathione peroxidase and superoxide dismutase in the thigh of growers. The extra methionine decreased (P < 0.05) hepatic gene expression of heat shock protein 90 (18%) and thigh and breast malondialdehyde concentrations of the finishers (35%). In conclusion, the 30% extra dl-methionine supplementation was able to partially mitigate adverse effects caused by the higher stocking density and to improve the redox status of the broilers.


Subject(s)
Antioxidants/metabolism , Chickens/physiology , Dietary Supplements/analysis , Fatty Acids/analysis , Methionine/pharmacology , Animal Feed/analysis , Animals , Body Weight/drug effects , Chickens/growth & development , Diet/veterinary , Glutathione/analysis , Glutathione Peroxidase/metabolism , Liver/metabolism , Male , Malondialdehyde/analysis , Oxidation-Reduction , Superoxide Dismutase/metabolism
5.
J Anim Sci ; 97(12): 4883-4894, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31710661

ABSTRACT

This study was to explore metabolic effects of two forms and concentrations of supplemental methionine in grower and finisher diets for broiler chickens raised at high temperature. Male Cornish cockerel chicks (total = 360, day-old) were divided into four groups (10 pens/treatment, 9 chicks/pen) and fed with 100% or 130% required methionine in the diets as DL-methionine (DL-MET) or 2-hydroxy-4-(methylthio)butanoate (HMTBA). The room was maintained at 4 to 13 °C above the suggested thermoneutral temperature. The higher concentration of both DL-MET and HMTBA enhanced (P < 0.05) hepatic GSH concentrations of the growers and plasma ferric reducing ability of the finishers. The DL-MET-fed growers had greater (P < 0.05%) muscle GSH and hepatic unsaturated fatty acid concentrations than those fed HMTBA. Expression of inflammation-related genes in the liver of finishers was affected (P < 0.05) by interaction effects of the methionine form and concentration. In conclusion, effects of the extra methionine supplementation on the high ambient temperature-related metabolic responses of broilers varied with their age and(or) tissue and the methionine form.


Subject(s)
Antioxidants/metabolism , Chickens/physiology , Dietary Supplements/analysis , Inflammation/veterinary , Methionine/administration & dosage , Animal Feed/analysis , Animals , Diet/veterinary , Fatty Acids/analysis , Gene Expression/drug effects , Hot Temperature , Liver/metabolism , Male
6.
J Agric Food Chem ; 67(23): 6497-6507, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31083936

ABSTRACT

This experiment was to enrich docosahexaenoic acid (DHA) in broiler tissues through feeding a DHA-rich microalgal biomass and to explore the underlying metabolic and molecular mechanisms. Hatchling Cornish male broilers (total = 192) were fed a corn-soybean meal basal diet containing a full-fatted microalgae ( Aurantiochytrium) at 0%, 1%, 2%, and 4% for 6 weeks ( n = 6 cages/treatment, 8 birds/cage). The inclusion of microalgae led to dose-dependent ( P < 0.01) enrichments of DHA and decreases ( P < 0.01) of n-6/n-3 fatty acids (FAs) in plasma, liver, muscle, and adipose tissue. The microalgae supplementation also lowered ( P < 0.05-0.1) nonesterified FAs concentrations in the plasma, liver and adipose tissue. The mRNA abundances of most assayed genes involved in lipid metabolism were decreased ( P < 0.05) in the liver but elevated ( P < 0.05) in the adipose in response to the biomass supplementation. In conclusion, the biomass-resultant DHA enrichments in the broiler tissues were associated with a distinctive difference in the expression of lipid metabolism-controlling genes between the liver and adipose tissue.


Subject(s)
Animal Feed/analysis , Chickens/metabolism , Dietary Supplements/analysis , Docosahexaenoic Acids/metabolism , Fatty Acids/metabolism , Microalgae/metabolism , Stramenopiles/metabolism , Adipose Tissue/metabolism , Animal Nutritional Physiological Phenomena , Animals , Chickens/genetics , Fatty Acids/chemistry , Female , Liver/metabolism , Male , Microalgae/chemistry , Muscles/metabolism , Stramenopiles/chemistry
7.
J Nutr ; 149(6): 942-950, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31006820

ABSTRACT

BACKGROUND: The potential for dietary microalgae to enrich eggs of laying hens with ω-3 (n-3) fatty acids, and the mechanisms involved, are unclear. OBJECTIVES: The aim of this study was to determine the effects and molecular regulation of a defatted Nannochloropsis oceanica microalgae (DNOM) biomass on the enrichment of the eggs and tissues of laying hens with ω-3 fatty acids. METHODS: Fifty Shaver-White Leghorn hens (46 wk of age, body weight: 1.70 ± 0.27 kg) were individually caged (n = 10) and fed a corn-soy-based diet supplemented with DNOM at 0% (control), 2.86%, 5.75%, 11.5%, and 23% for 6 wk. Fatty acid profiles, health status, and related gene expression in eggs, blood, and tissues were performed at weeks 0, 2, 4, and 6. Data were analyzed by a combination of 1-factor ANOVA and correlation between DNOM doses and measures. RESULTS: The DNOM produced linear (P < 0.01) enrichments of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total ω-3 fatty acids in the egg yolk (R2 > 0.9) and of DHA in the liver, breast, and thigh (R2 = 0.66-0.82). Concentrations of EPA + DHA in the egg yolk and these 3 tissues of hens fed 11.5% and 23% DNOM were 1.4-2.1, 0.6-1, 3.3-5.3, and 6-7 times greater (P < 0.001) than those in the controls, respectively. The DNOM caused dose-dependent elevations (P < 0.01) of malic enzyme and elongases 3, 4, and 5 mRNA levels (R2 = 0.97, 0.78, 0.97, and 0.86, respectively), along with increased (P < 0.01) Δ5- and Δ6-desaturases and decreased (P < 0.01) Δ9-desaturase and acyl-coenzyme A thioesterase 4 mRNA levels in the liver. CONCLUSIONS: Feeding DNOM to laying hens produced dose-dependent enrichments of DHA in their eggs, liver, and muscles by regulating key genes involved in the elongation and desaturation of polyunsaturated fatty acids. Our findings will help produce DHA-enriched eggs.


Subject(s)
Dietary Supplements , Egg Yolk/metabolism , Fatty Acids, Omega-3/metabolism , Microalgae , Animal Feed , Animals , Biomass , Chickens , Diet , Fatty Acids, Omega-3/genetics , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stramenopiles , Tissue Distribution
8.
J Nutr ; 148(10): 1547-1555, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30204898

ABSTRACT

Background: We previously showed enrichments of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in broiler chicks fed defatted microalgae. Objectives: The aims of this study were to determine 1) if the enrichments affected meat texture and were enhanced by manipulating dietary corn oil, selenium, and vitamin E concentrations and 2) how the enrichments corroborated with hepatic gene expression involved in biosynthesis and oxidation of EPA and DHA. Methods: Day-old hatching Cornish Giant cockerels (n = 216) were divided into 6 groups (6 cages/group and 6 chicks/cage). Chicks were fed 1 of the 6 diets: a control diet containing 4% corn oil, 25 IU vitamin E/kg, and 0.2 mg Se/kg (4CO), 4CO + 10% microalgae (defatted Nannochloropsis oceanica; 4CO+ MA), 4CO+ MA - 2% corn oil (2CO+MA), 2CO+MA + 75 IU vitamin E/kg (2CO+MA+E), 2CO+MA + 0.3 mg Se/kg (2CO+MA+Se), and 2CO+MA+E + 0.3 mg Se/kg (2CO+MA+E+Se). After 6 wk, fatty acid profiles, DHA and EPA biosynthesis and oxidation, gene expression, lipid peroxidation, antioxidant status, and meat texture were measured in liver, muscles, or both. Results: Compared with the control diet, defatted microalgae (4CO+MA) enriched (P < 0.05) DHA and EPA by ≤116 and 24 mg/100 g tissue in the liver and muscles, respectively, and downregulated (41-76%, P < 0.01) hepatic mRNA abundance of 4 cytochrome P450 (CYP) enzymes (CYP2C23b, CYP2D6, CYP3A5, CYP4V2). Supplemental microalgae decreased (50-82%, P < 0.05) lipid peroxidation and improved (16-28%, P < 0.05) antioxidant status in the liver, muscles, or both. However, the microalgae-mediated enrichments in the muscles were not elevated by altering dietary corn oil, vitamin E, or selenium and did not affect meat texture. Conclusion: The microalgae-mediated enrichments of DHA and EPA in the chicken muscles were associated with decreased hepatic gene expression of their oxidation, but were not further enhanced by altering dietary corn oil, vitamin E, or selenium.


Subject(s)
Corn Oil/pharmacology , Fatty Acids, Omega-3/biosynthesis , Meat/analysis , Microalgae , Muscles , Selenium/pharmacology , Vitamin E/pharmacology , Animal Feed , Animals , Antioxidants/pharmacology , Chickens , Diet , Docosahexaenoic Acids/biosynthesis , Eicosapentaenoic Acid/biosynthesis , Fatty Acids, Omega-3/pharmacology , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Male , Muscles/drug effects , Muscles/metabolism
9.
J Agric Food Chem ; 66(22): 5521-5530, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29733582

ABSTRACT

Astaxanthin (AST) is a well-known carotenoid with a high antioxidant capacity. This study was designed to evaluate the nutritional and metabolic effects of microalgal AST added to the diets of broiler chicks under heat stress. A total of 240 Cornish male chicks (1 day old) were divided into six cages per treatment (eight chicks per cage) and fed a corn-soybean meal diet supplemented with AST from Haematococcus pluvialis at 0, 10, 20, 40, and 80 mg/kg for 6 weeks. Heat stress was employed during weeks 4-6. The supplementation led to dose-dependent enrichments ( P < 0.05) of AST and total carotenoids in the plasma, the liver, and the breast and thigh muscles. There were similar enhancements ( P < 0.05) of oxygen-radical-absorbance capacities, but there were decreases or mixed responses ( P < 0.05) of glutathione concentrations and glutathione peroxidase activities in the tissues. In conclusion, supplemental dietary microalgal AST was bioavailable to the chicks and enriched in their tissues independent of heat stress, leading to coordinated changes in their endogenous antioxidant defense and meat quality.


Subject(s)
Chickens/physiology , Chlorophyta/chemistry , Dietary Supplements/analysis , Microalgae/chemistry , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Antioxidants/administration & dosage , Antioxidants/analysis , Chickens/growth & development , Dietary Supplements/statistics & numerical data , Dose-Response Relationship, Drug , Glutathione/metabolism , Hot Temperature , Male , Oxidation-Reduction , Oxidative Stress/drug effects , Stress, Physiological , Xanthophylls/administration & dosage , Xanthophylls/analysis
SELECTION OF CITATIONS
SEARCH DETAIL