Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Bacteriol ; 177(18): 5350-4, 1995 Sep.
Article in English | MEDLINE | ID: mdl-7665526

ABSTRACT

The MM281 strain of Salmonella typhimurium possesses mutations in each of its three Mg2+ transport systems, requires 100 mM Mg2+ for growth, and was used to screen a genomic library from the gram-negative bacterium Providencia stuartii for clones that could restore the ability to grow without Mg2+ supplementation. The clones obtained also conferred sensitivity to Co2+, a phenotype similar to that seen with the S. typhimurium corA Mg2+ transport gene. The sequence of the cloned P. stuartii DNA revealed the presence of a single open reading frame, which was shown to express a protein with a gel molecular mass of 37 kDa in agreement with the deduced size of 34 kDa. Despite a phenotype similar to that of corA and the close phylogenetic relationship between P. stuartii and S. typhimurium, this new putative Mg2+ transporter lacks similarity to the CorA Mg2+ transporter and is instead homologous to MgtE, a newly discovered Mg2+ transport protein from the gram-positive bacterium Bacillus firmus OF4. The distribution of mgtE in bacteria was studied by Southern blot hybridization to PCR amplification products. In contrast to the ubiquity of the corA gene, which encodes the dominant constitutive Mg2+ influx system of bacteria, mgtE has a much more limited phylogenetic distribution.


Subject(s)
Antiporters/genetics , Bacterial Proteins/genetics , Cation Transport Proteins , Genes, Bacterial/genetics , Gram-Negative Bacteria/genetics , Gram-Positive Bacteria/genetics , Providencia/genetics , Amino Acid Sequence , Antiporters/chemistry , Bacterial Proteins/chemistry , Base Sequence , Carrier Proteins/genetics , Cloning, Molecular , Cobalt/pharmacology , Ion Transport , Magnesium/metabolism , Molecular Sequence Data , Molecular Weight , Phylogeny , Providencia/drug effects , Salmonella typhimurium/genetics , Sequence Analysis, DNA
2.
J Bacteriol ; 177(5): 1233-8, 1995 Mar.
Article in English | MEDLINE | ID: mdl-7868596

ABSTRACT

The MM281 strain of Salmonella typhimurium which possesses mutations in each its three known Mg2+ transport systems and requires 100 mM Mg2+ for growth was used to screen a genomic library from the gram-positive alkaliphilic bacterium Bacillus firmus OF4 for clones that could restore the ability to grow without Mg2+ supplementation. Of the clones obtained, five also conferred sensitivity to Co2+, similar to the phenotype of mutants with mutations in the S. typhimurium corA Mg2+ transport locus. All five contained identical inserts by restriction analysis. Using 63Ni2+ as a surrogate for the unavailable 28Mg2+, the plasmid insert was shown to restore cation uptake with properties similar but not identical to those of the S. typhimurium CorA Mg2+ transporter. Sequence analysis of one clone identified a single open reading frame with multiple possible initiation sites. Deletion and mutation analysis identified a minimum open reading frame of 939 bp encoding a polypeptide with a predicted molecular mass of 34 kDa. Disruption of the open reading frame eliminated cation influx activity and restored resistance to Co2+. This putative transporter, designated MgtE, has no sequence similarity to any known protein including CorA and appears to represent a new class of Mg2+ transport system.


Subject(s)
Antiporters/genetics , Bacillus/genetics , Bacterial Proteins , Cation Transport Proteins , Genes, Bacterial/genetics , Magnesium/metabolism , Amino Acid Sequence , Antiporters/metabolism , Base Sequence , Biological Transport , Carrier Proteins/genetics , Cations, Divalent/metabolism , Cobalt/metabolism , Genetic Complementation Test , Genomic Library , Molecular Sequence Data , Nickel/metabolism , Open Reading Frames , Phenotype , Protein Conformation , Salmonella typhimurium , Sequence Analysis, DNA
3.
J Bioenerg Biomembr ; 24(3): 319-28, 1992 Jun.
Article in English | MEDLINE | ID: mdl-1328179

ABSTRACT

The gram-negative bacterium Salmonella typhimurium possesses three distinct Mg2+ transport systems, encoded by the corA, mgtA, and mgtB loci. The CorA transport system is the constitutive Mg2+ influx system. It can also mediate Mg2+ efflux at very high extracellular Mg2+ concentrations. In contrast, the MgtA and MgtB Mg2+ transport systems are normally expressed only at low extracellular Mg2+ concentrations. A strain of S. typhimurium was constructed by mutagenesis which lacks Mg2+ transport and requires 100 mM Mg2+ for growth. Using this strain, both the MgtA and MgtB transport systems were cloned by complementation of the strains inability to grow without Mg2+ supplementation. After sequencing and further genetic analysis, the MgtB system appears to be an operon composed of the mgtC and mgtB genes (5' to 3'). The downstream mgtB gene encodes the 102 kDa MgtB protein which by sequence analysis is clearly a P-type ATPase. Interestingly, while MgtB has relatively poor homology to other known prokaryotic P-type ATPases, it is highly homologous to mammalian reticular Ca(2+)-ATPases. MgtC is a 22.5 kDa hydrophobic membrane protein that lacks homology to any known protein. Transposon insertions in this gene abolish uptake by the MgtB transport system. We hypothesize that MgtC is a subunit of the MgtB ATPase involved either in proper insertion of MgtB into the membrane or possibly in binding of extracellular Mg2+ for delivery to the ATPase subunit. The sequence of the MgtA gene has recently been completed, and it too is a P-type ATPase more similar to eukaryotic than prokaryotic P-type ATPases. Expression of both MgtA and MgtB are highly regulated by the concentration of extracellular Mg2+. Transcription of mgtB can be increased about 1000 fold by lowering Mg2+ from 1 mM to 1 microM. Likewise, when mgtB is expressed from a multicopy plasmid, a similar decrease in extracellular Mg2+ greatly increases transport. Under growth conditions of limiting Mg2+, MgtB becomes the dominant Mg2+ influx system in S. typhimurium. Even so, since MgtB (and MgtA) mediate only influx of Mg2+, it is unclear why the cell requires energy from ATP to mediate Mg2+ entry into the cell down a large electrochemical gradient. Further studies of the structure-function and energetics of these novel Mg2+ influx P-type ATPases should yield insights into the function of P-type ATPases in general as well as information about the regulation of cellular Mg2+ fluxes.


Subject(s)
Adenosine Triphosphatases/metabolism , Ion Pumps , Magnesium/metabolism , Salmonella typhimurium/enzymology , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Biological Evolution , Gene Expression Regulation, Bacterial , Protein Conformation , Salmonella typhimurium/genetics
4.
J Bacteriol ; 171(9): 4742-51, 1989 Sep.
Article in English | MEDLINE | ID: mdl-2548998

ABSTRACT

Salmonella typhimurium strains lacking the CorA Mg2+ transport system retain Mg2+ transport and the ability to grow in medium containing a low concentration of Mg2+. Mutagenesis of a corA strain followed by ampicillin selection allowed isolation of a strain that required Mg2+-supplemented media for growth. This strain contained mutations in at least two loci in addition to corA, designated mgtA and mgtB (for magnesium transport). Strains with mutations at all three loci (corA, mgtA, and mgtB) exhibited no detectable Mg2+ uptake and required 10 mM Mg2+ in the medium for growth at the wild-type rate. A wild-type allele at any one of the three loci was sufficient to restore both Mg2+ transport and growth on 50 microM Mg2+. P22 transduction was used to map the mgt loci. The mgtA mutation was located to approximately 98 map units (cotransducible with pyrB), and mgtB mapped at about 80.5 map units (near gltC). A chromosomal library from S. typhimurium was screened for clones that complemented the Mg2+ requirement of a corA mgtA mgtB mutant. The three classes of plasmids obtained could each independently restore Mg2+ transport to this strain and corresponded to the corA, mgtA, and mgtB loci. Whereas the corA locus of S. typhimurium is analogous to the corA locus previously described for Escherichia coli, neither of the mgt loci described in this report appears analogous to the single mgt locus described in E. coli. Our data in this and the accompanying papers (M. D. Snavely, J. B. Florer, C. G. Miller, and M. E. Maguire, J. Bacteriol. 171:4752-4760, 4761-4766, 1989) indicate that the corA, mgtA, and mgtB loci of S. typhimurium represent three distinct systems that transport Mg2+.


Subject(s)
Genes, Bacterial , Magnesium/metabolism , Salmonella typhimurium/genetics , Biological Transport , Cloning, Molecular , Crosses, Genetic , DNA Transposable Elements , Genotype , Kinetics , Mutation , Plasmids , Restriction Mapping , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Transduction, Genetic
5.
J Bacteriol ; 171(9): 4752-60, 1989 Sep.
Article in English | MEDLINE | ID: mdl-2548999

ABSTRACT

In Salmonella typhimurium, the corA, mgtA, and mgtB loci are involved in active transport of Mg2+ (S. P. Hmiel, M. D. Snavely, C. G. Miller, and M. E. Maguire, J. Bacteriol. 168:1444-1450, 1988; S. P. Hmiel, M. D. Snavely, J. B. Florer, M. E. Maguire, and C. G. Miller, J. Bacteriol. 171:4742-4751, 1989). In this study, the gene products coded for by the corA, mgtA, and mgtB genes were identified by using plasmid expression in Escherichia coli maxicells. Complementation was assessed by introducing plasmids into a Mg2+-dependent corA mgtA mgtB strain and determining the ability of the plasmid to restore growth on medium without a Mg2+ supplement. Complementing plasmids containing corA expressed a 42-kilodalton (kDa) protein. This protein was not expressed by plasmids containing insertions or deletions that eliminated complementation. A plasmid containing mgtA expressed 37- and 91-kDa gene products. Data obtained with subclones and insertions in this plasmid indicated that plasmids expressing only the 91-kDa polypeptide complemented; plasmids that did not express this protein did not complement regardless of whether they expressed the 37-kDa protein. Plasmids carrying mgtB expressed a single protein of 102 kDa whose presence or absence correlated with the ability of the plasmid to complement the Mg2+-dependent triple mutant. Fractionation of labeled maxicells demonstrated that the 42-kDa corA, the 91-kDa mgtA, and the 102-kDa mgtB gene products are all tightly associated with the membrane, a location consistent with involvement in a transport process. These data provide further support the for existence of three distinct systems for Mg2+ transport in S. typhimurium.


Subject(s)
Cloning, Molecular , Genes, Bacterial , Magnesium/metabolism , Salmonella typhimurium/genetics , Bacterial Proteins/genetics , Biological Transport , Cell Membrane/metabolism , Cytosol/metabolism , Genotype , Mutation , Plasmids , Promoter Regions, Genetic , Restriction Mapping , Salmonella typhimurium/metabolism
6.
Magnesium ; 6(3): 113-27, 1987.
Article in English | MEDLINE | ID: mdl-3306178

ABSTRACT

Of the two major intracellular divalent cations, Ca2+ has been studied much more extensively than Mg2+ and is now well accepted as a major intracellular regulator. This review focuses instead on some recent advances in the understanding of the physiology and biochemistry of Mg2+. For purposes of discussion, four criteria have been developed that should be fulfilled if Mg2+ is to be accepted as an important intracellular regulatory cation: cellular processes must exist which are sensitive to free Mg2+ within the physiological concentration range; a (transport) mechanism(s) must exist which is capable of altering free Mg2+ concentration within a cell; if Mg2+ is compartmented within cells, any potentially regulated system or process and any change in intracellular free Mg2+ concentration must be shown to occur within the same compartment; and any change(s) in free Mg2+ concentration and any alteration(s) in a Mg2+-sensitive process must occur in a sequential manner. These criteria are largely but not completely met at the present time. Criteria 1 and probably 2 can be shown in at least some systems to be fully met. Criteria 3 and 4 are partially met but neither can be fully examined until methods for measuring intracellular free Mg2+ concentrations on an appropriate time scale are further developed. Thus, there exists strong but as yet incomplete evidence that Mg2+, like Ca2+, can play an active, regulatory role within cells. Finally, it is suggested that Ca2+ plays the specific role of the acute, transient regulatory element while Mg2+ plays the complementary role of a more long-term regulatory element which controls the set point or gain of a system or process.


Subject(s)
Cations, Divalent , Magnesium/physiology , Models, Biological , Animals , Biological Transport , Biomechanical Phenomena , Intracellular Membranes/metabolism , Magnesium/metabolism , Osmolar Concentration , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL