Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 53(7): 3399-3409, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30807121

ABSTRACT

Uranium (U) groundwater contamination is a major concern at numerous former mining and milling sites across the Upper Colorado River Basin (UCRB), USA, where U(IV)-bearing solids have accumulated within naturally reduced zones (NRZs). Understanding the processes governing U reduction and oxidation within NRZs is critical for assessing the persistence of U in groundwater. To evaluate the redox cycling of uranium, we measured the U concentrations and isotopic compositions (δ238U) of sediments and pore waters from four study sites across the UCRB that span a gradient in sediment texture and composition. We observe that U accumulation occurs primarily within fine-grained (low-permeability) NRZs that show active redox variations. Low-permeability NRZs display high accumulation and low export of U, with internal redox cycling of U. In contrast, within high-permeability NRZs, U is remobilized under oxidative conditions, possibly without any fractionation, and transported outside the NRZs. The low δ238U of sediments outside of defined NRZs suggests that these reduced zones act as additional U sources. Collectively, our results indicate that fine-grained NRZs have a greater potential to retain uranium, whereas NRZs with higher permeability may constitute a more-persistent but dilute U source.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Colorado , Geologic Sediments , Oxidation-Reduction , Rivers
2.
Environ Sci Technol ; 50(12): 6189-98, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27203292

ABSTRACT

We use uranium (U) isotope ratios to detect and quantify the extent of natural U reduction in groundwater across a roll front redox gradient. Our study was conducted at the Smith Ranch-Highland in situ recovery (ISR) U mine in eastern Wyoming, USA, where economic U deposits occur in the Paleocene Fort Union formation. To evaluate the fate of aqueous U in and adjacent to the ore body, we investigated the chemical composition and isotope ratios of groundwater samples from the roll-front type ore body and surrounding monitoring wells of a previously mined area. The (238)U/(235)U of groundwater varies by approximately 3‰ and is correlated with U concentrations. Fluid samples down-gradient of the ore zone are the most depleted in (238)U and have the lowest U concentrations. Activity ratios of (234)U/(238)U are ∼5.5 up-gradient of the ore zone, ∼1.0 in the ore zone, and between 2.3 and 3.7 in the down-gradient monitoring wells. High-precision measurements of (234)U/(238)U and (238)U/(235)U allow for development of a conceptual model that evaluates both the migration of U from the ore body and the extent of natural attenuation due to reduction. We find that the premining migration of U down-gradient of the delineated ore body is minimal along eight transects due to reduction in or adjacent to the ore body, whereas two other transects show little or no sign of reduction in the down-gradient region. These results suggest that characterization of U isotopic ratios at the mine planning stage, in conjunction with routine geochemical analyses, can be used to identify where more or less postmining remediation will be necessary.


Subject(s)
Uranium , Water Pollutants, Radioactive , Groundwater/chemistry , Minerals , Mining
3.
Environ Sci Technol ; 50(1): 46-53, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26651843

ABSTRACT

The Rifle alluvial aquifer along the Colorado River in west central Colorado contains fine-grained, diffusion-limited sediment lenses that are substantially enriched in organic carbon and sulfides, as well as uranium, from previous milling operations. These naturally reduced zones (NRZs) coincide spatially with a persistent uranium groundwater plume. There is concern that uranium release from NRZs is contributing to plume persistence or will do so in the future. To better define the physical extent, heterogeneity and biogeochemistry of these NRZs, we investigated sediment cores from five neighboring wells. The main NRZ body exhibited uranium concentrations up to 100 mg/kg U as U(IV) and contains ca. 286 g of U in total. Uranium accumulated only in areas where organic carbon and reduced sulfur (as iron sulfides) were present, emphasizing the importance of sulfate-reducing conditions to uranium retention and the essential role of organic matter. NRZs further exhibited centimeter-scale variations in both redox status and particle size. Mackinawite, greigite, pyrite and sulfate coexist in the sediments, indicating that dynamic redox cycling occurs within NRZs and that their internal portions can be seasonally oxidized. We show that oxidative U(VI) release to the aquifer has the potential to sustain a groundwater contaminant plume for centuries. NRZs, known to exist in other uranium-contaminated aquifers, may be regionally important to uranium persistence.


Subject(s)
Geologic Sediments/chemistry , Groundwater/chemistry , Organic Chemicals/analysis , Uranium/chemistry , Water Pollutants, Radioactive/analysis , Carbon/analysis , Color , Colorado , Oxidation-Reduction , Particle Size , Sulfur/analysis , Uranium/analysis , X-Ray Absorption Spectroscopy
4.
Environ Sci Technol ; 49(10): 5939-47, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25909757

ABSTRACT

In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Postmining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers (238)U/(235)U (δ(238)U), (234)U/(238)U activity ratio, and (34)S/(32)S (δ(34)S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility at an ISR mining site at Rosita, TX, USA. The δ(238)U in Rosita groundwater varies from +0.61‰ to -2.49‰, with a trend toward lower δ(238)U in downgradient wells. The concurrent decrease in U(VI) concentration and δ(238)U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic (234)U/(238)U activity ratio and δ(34)S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.


Subject(s)
Environmental Restoration and Remediation , Mining , Uranium/analysis , Water Pollutants, Radioactive/analysis , Geography , Groundwater/chemistry , Oxidation-Reduction , Sulfur Isotopes , Texas
5.
Environ Sci Technol ; 48(15): 8636-44, 2014.
Article in English | MEDLINE | ID: mdl-24984107

ABSTRACT

High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination.


Subject(s)
Silicon Dioxide/chemistry , Uranium/chemistry , Adsorption , Ferric Compounds , Iron/chemistry , Oxides/chemistry , Silicates , X-Ray Absorption Spectroscopy
6.
Environ Sci Technol ; 38(12): 3330-7, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15260332

ABSTRACT

In the mid-1990s, a groundwater plume of uranium (U) was detected in monitoring wells in the B-BX-BY Waste Management Area at the Hanford Site in Washington. This area has been used since the late 1940s to store high-level radioactive waste and other products of U fuel-rod processing. Using multiple-collector ICP source magnetic sector mass spectrometry, high-precision uranium isotopic analyses were conducted of samples of vadose zone contamination and of groundwater. The isotope ratios 236U/238U, 234U/238U, and 238U/235U are used to distinguish contaminant sources. On the basis of the isotopic data, the source of the groundwater contamination appears to be related to a 1951 overflow event at tank BX-102 that spilled high-level U waste into the vadose zone. The U isotopic variation of the groundwater plume is a result of mixing between contaminant U from this spill and natural background U. Vadose zone U contamination at tank B-110 likely predates the recorded tank leak and can be ruled out as a significant source of groundwater contamination, based on the U isotopic composition. The locus of vadose zone contamination is displaced from the initial locus of groundwater contamination, indicating that lateral migration in the vadose zone was at least 8 times greater than vertical migration. The time evolution of the groundwater plume suggests an average U migration rate of approximately 0.7-0.8 m/day showing slight retardation relative to a groundwater flow of approximately 1 m/day.


Subject(s)
Radioactive Waste , Soil Pollutants, Radioactive/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis , Environmental Monitoring , Washington , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL