Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
2.
Acta Pharm Sin B ; 13(3): 1164-1179, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36970196

ABSTRACT

Sepsis-induced liver injury (SILI) is an important cause of septicemia deaths. BaWeiBaiDuSan (BWBDS) was extracted from a formula of Panax ginseng C. A. Meyer, Lilium brownie F. E. Brown ex Miellez var. viridulum Baker, Polygonatum sibiricum Delar. ex Redoute, Lonicera japonica Thunb., Hippophae rhamnoides Linn., Amygdalus Communis Vas, Platycodon grandiflorus (Jacq.) A. DC., and Cortex Phelloderdri. Herein, we investigated whether the BWBDS treatment could reverse SILI by the mechanism of modulating gut microbiota. BWBDS protected mice against SILI, which was associated with promoting macrophage anti-inflammatory activity and enhancing intestinal integrity. BWBDS selectively promoted the growth of Lactobacillus johnsonii (L. johnsonii) in cecal ligation and puncture treated mice. Fecal microbiota transplantation treatment indicated that gut bacteria correlated with sepsis and was required for BWBDS anti-sepsis effects. Notably, L. johnsonii significantly reduced SILI by promoting macrophage anti-inflammatory activity, increasing interleukin-10+ M2 macrophage production and enhancing intestinal integrity. Furthermore, heat inactivation L. johnsonii (HI-L. johnsonii) treatment promoted macrophage anti-inflammatory activity and alleviated SILI. Our findings revealed BWBDS and gut microbiota L. johnsonii as novel prebiotic and probiotic that may be used to treat SILI. The potential underlying mechanism was at least in part, via L. johnsonii-dependent immune regulation and interleukin-10+ M2 macrophage production.

3.
Acta Pharmacol Sin ; 43(8): 2094-2108, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34873316

ABSTRACT

Patients with refractory rheumatoid arthritis (RA) remain a substantial clinical problem, while the overexpression of P-glycoprotein (P-gp) on their lymphocytes may contribute to resistance to anti-rheumatic drugs. This study aims to develop a novel treatment for refractory RA consisting of the combination of total glucosides of paeony (TGPs) and the P-gp inhibitor nobiletin (N), which are codelivered in a self-nanoemulsifying drug delivery system (SNEDDS). Based on the solubility, compatibility, and pseudoternary phase diagram tests, a nano-SNEDDS formulation composed of capryol 90-cremophor EL35-tcranscutol HP (CET) to codeliver TGP and N was developed, and this formulation increased the bioavailability of TGP by 435.04% (indicated with paeoniflorin). A modified adjuvant-induced arthritis (AIA) rat model was verified for the overexpression of P-gp in lymphocytes and resistance to methotrexate (MTX) treatment at the reported anti-inflammatory dosage. CET formulation not only increased the solubility and permeability of TGP but also inhibited the function and expression of P-gp, leading to enhanced bioavailability and intracellular concentration in the lymphocytes of AIA rats and consequently boosting the anti-arthritic effects of TGP. Moreover, TGP and N coloaded CET reduced the expression of P-gp in AIA rats partly by inhibiting the phosphorylated AKT and HIF-1α pathways. In summary, TGP-N coloaded SNEDDS is a novel and effective treatment for refractory RA.


Subject(s)
Arthritis, Rheumatoid , Paeonia , Animals , Arthritis, Rheumatoid/drug therapy , Drug Delivery Systems , Flavones , Glucosides/pharmacology , Rats
4.
Phytomedicine ; 96: 153831, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34794861

ABSTRACT

BACKGROUND: Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking. HYPOTHESIS/PURPOSE: A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established. METHODS: The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism. CONCLUSION: This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.


Subject(s)
Lung Neoplasms , Pharmaceutical Preparations , Animals , Biomarkers , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Lung Neoplasms/drug therapy , Metabolomics , Mice , Tandem Mass Spectrometry , X-Ray Microtomography
5.
Phytomedicine ; 85: 153522, 2021 May.
Article in English | MEDLINE | ID: mdl-33799223

ABSTRACT

BACKGROUND: Thousands of years of clinical application of Wutou decoction (WTD) support its reliable efficacy and safety in treating rheumatoid arthritis (RA). However, the underlying molecular mechanism remains unclear, and the synergistic involvement of assistant herbs in WTD in enhancing the sovereign herb in treating RA is unknown. PURPOSE: This study aimed to investigate the efficacy-oriented compatibility of five herbs in WTD and the underlying mechanisms. METHODS: The anti-arthritic effects of WTD and the compatibilities of the five herbs in WTD were studied in vivo with adjuvant-induced arthritis (AIA) rat model and in vitro with LPS-induced RAW264.7 macrophage. Network pharmacology analysis was conducted to identify the dominant pathways involved in the anti-arthritis mechanisms of WTD and how the five herbs work synergistically. The results were further verified by in vivo and in vitro experiments. RESULTS: Our data revealed that the five herbs in WTD exert synergistic anti-arthritic effects on RA. Moreover, Radix Aconite (AC) is the principal anti-inflammatory component in WTD according to the extent of therapeutic effects exerted on the AIA rats. In vivo and in vitro experiments demonstrated that WTD inhibited NF-κB phosphorylation and simultaneously increased the expression of Nrf2, which were the major pathways identified by the network pharmacology analysis. The major assistant component, Herba Ephedrae (EP), evidently inhibited NF-κB mediated inflammatory response. The other assistant component, Radix Astragali (AS), considerably enhanced the expression of Nrf2 when used alone or in combination with AC. These combinations improved the anti-arthritis effects on the AIA rats better than that of AC alone. Nevertheless, WTD always achieved the best effects than any combinations both in vivo and in vitro. CONCLUSION: The ministerial herbs EP and AS intensify the anti-arthritic effects of AC by regulating the NF-κB-mediated inflammatory pathway and the Nrf2-mediated anti-oxidation pathway which are the major pathways of WTD for alleviating the symptoms of RA.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/therapeutic use , Aconitum/chemistry , Animals , Astragalus propinquus , Female , Humans , Male , Medicine, Chinese Traditional , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Phosphorylation , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , THP-1 Cells
6.
Chin Herb Med ; 13(4): 451-460, 2021 Oct.
Article in English | MEDLINE | ID: mdl-36119361

ABSTRACT

Rheumatoid arthritis (RA), the most common inflammatory arthropathy word wild, is a systemic autoimmune disease that mainly affects the synovium of joints with a high disability rate. Metabolic mis-regulation has emerged as a fundamental pathogenesis of RA linked to immune cell dysfunction, while targeting immunometabolism provides a new and effective approach to regulate the immune responses and thus alleviate the symptom of RA. Recently, natural active compounds from traditional Chinese medicines (TCMs) have potential therapeutic effects on RA and regulating immunometabolism. In this review, in addition to updating the connection between cellular metabolism and cell function in immune cells of RA, we summarized that the anti-inflammatory mechanisms of the potential natural compounds from TCM by targeting metabolic reprogramming of immune cells, and discusses them as a rich resource for providing the new potential paradigm for the treatment of RA.

7.
Phytomedicine ; 80: 153339, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33038868

ABSTRACT

BACKGROUND: As dysregulation of immunometabolism plays a key role in the immunological diseases, dyslipidemia frequently observed in rheumatoid arthritis (RA) patients (60%) is associated with the disease activity and has been considered as the potential target of anti-inflammatory strategy. However, targeting of metabolic events to develop novel anti-inflammatory therapeutics are far from clear as well as the mechanism of dyslipidemia in RA. PURPOSE: To explore the therapeutic potential and mechanisms of silybin again RA through the regulation of lipid metabolism. METHODS: Adjuvant-induced arthritis (AIA) rat model was used to examine the effects of silybin on modulating dysregulated lipid metabolism and arthritis. Metabolomics, docking technology, and biochemical methods such as western blots, qRT-PCR, immunofluorescence staining were performed to understanding the underlying mechanisms. Moreover, knock-down of LXRα and LXRα agonist were used on LO2 cell lines to understand the action of silybin. RESULTS: We are the first to demonstrate that silybin can ameliorate dyslipidemia and arthritis in AIA rats. Overexpression of LXRα and several key lipogenic enzymes regulated by LXRα, including lipoprotein lipase (LPL), cholesterol 7α and 27α hydroxylase (CYP7A, CYP27A), adipocyte fatty acid-binding protein (aP2/FABP4) and fatty acid translocase (CD36/FAT), were observed in AIA rats, which mostly accounted for dyslipidemia during arthritis development. Metabolomics, docking technology, and biochemical results indicated that anti-arthritis effects of silybin related to suppressing the up-regulated LXRα and abnormal lipid metabolism. Notably, activation of LXRα could potentiate cell inflammatory process induced by LPS through the regulation of NF-κB pathway, however, suppression of LXRα agonism by siRNA or silybin reduced the nuclear translocation of NF-κB as well as the induction of downstream cytokines, indicating LXRα agonism is the important factor for the arthritis development and could be a potential target. CONCLUSION: The up-regulation of LXRα can activate lipogenesis enzymes to worsen the inflammatory process in AIA rats as well as the development of dyslipidemia, therefore, rectifying lipid disorder via suppression of LXRα agonism pertains the capacity of drug target, which enables to discover and develop new drugs to treat rheumatoid arthritis with dyslipidaemia.


Subject(s)
Arthritis, Experimental/drug therapy , Lipid Metabolism/drug effects , Liver X Receptors/metabolism , Silybin/pharmacology , Animals , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Cell Line , Cytokines/metabolism , Dyslipidemias/drug therapy , Enzymes/metabolism , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Humans , Lipogenesis/drug effects , Lipogenesis/physiology , Liver/drug effects , Liver/metabolism , Liver X Receptors/antagonists & inhibitors , Liver X Receptors/genetics , Male , NF-kappa B/metabolism , Rats, Sprague-Dawley , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL