Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Affiliation country
Publication year range
1.
Br J Pharmacol ; 176(6): 757-772, 2019 03.
Article in English | MEDLINE | ID: mdl-30588602

ABSTRACT

BACKGROUND AND PURPOSE: Atherosclerosis is characterized by chronic low-grade inflammation with concomitant lipid accumulation in the arterial wall. Anti-inflammatory and anti-atherogenic properties have been described for a novel class of endogenous nitroalkenes (nitrated-unsaturated fatty acids), formed during inflammation and digestion/absorption processes. The lipid-associated antioxidant α-tocopherol is transported systemically by LDL particles including to the atheroma lesions. To capitalize on the overlapping and complementary salutary properties of endogenous nitroalkenes and α-tocopherol, we designed and synthesized a novel nitroalkene-α-tocopherol analogue (NATOH) to address chronic inflammation and atherosclerosis, particularly at the lesion sites. EXPERIMENTAL APPROACH: We synthesized NATOH, determined its electrophilicity and antioxidant capacity and studied its effects over pro-inflammatory and cytoprotective pathways in macrophages in vitro. Moreover, we demonstrated its incorporation into lipoproteins and tissue both in vitro and in vivo, and determined its effect on atherosclerosis and inflammatory responses in vivo using the Apo E knockout mice model. KEY RESULTS: NATOH exhibited similar antioxidant capacity to α-tocopherol and, due to the presence of the nitroalkenyl group, like endogenous nitroalkenes, it exerted electrophilic reactivity. NATOH was incorporated in vivo into the VLDL/LDL lipoproteins particles to reach the atheroma lesions. Furthermore, oral administration of NATOH down-regulated NF-κB-dependent expression of pro-inflammatory markers (including IL-1ß and adhesion molecules) and ameliorated atherosclerosis in Apo E knockout mice. CONCLUSIONS AND IMPLICATIONS: In toto, the data demonstrate a novel pharmacological strategy for the prevention of atherosclerosis based on a creative, natural and safe drug delivery system of a non-conventional anti-inflammatory compound (NATOH) with significant potential for clinical application.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Atherosclerosis/drug therapy , Cyclopentanes/pharmacology , Inflammation/drug therapy , Nitro Compounds/pharmacology , alpha-Tocopherol/analogs & derivatives , alpha-Tocopherol/pharmacology , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Atherosclerosis/metabolism , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Female , Inflammation/metabolism , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Molecular Structure , RAW 264.7 Cells
2.
Arch Bronconeumol ; 45(5): 230-4, 2009 May.
Article in Spanish | MEDLINE | ID: mdl-19371995

ABSTRACT

INTRODUCTION: Chronic airflow obstruction in conditions such as chronic obstructive pulmonary disease is associated with respiratory muscle dysfunction. Our aim was to study the effects of salbutamol-a beta-adrenergic agonist known to improve muscle strength in physiologic and pathologic conditions-on diaphragm contractility in an animal model of chronic airway obstruction achieved by tracheal banding. MATERIALS AND METHODS: Twenty-four Sprague-Dawley rats were randomized into a control group and 3 tracheal banding groups, 1 that received acute salbutamol treatment, 1 that received chronic salbutamol treatment, and 1 that received nothing. Arterial blood gases, acid-base balance, and in vitro diaphragmatic contractility were evaluated by measuring peak twitch tension, contraction time, contraction velocity, half-relaxation time, relaxation velocity, and force-frequency curves. RESULTS: The 3 study groups had significantly reduced arterial pH and increased PaCO2 and bicarbonate levels compared to the control group (P<.05). The untreated tracheal banding group had significantly reduced peak twitch tension and contraction velocity, and a significantly lower force-frequency curve in comparison with the other groups (P<.05). The chronic treatment group had a higher relaxation velocity than the untreated study group (P<.05). The mean (SE) peak twitch tension values were 6.46 (0.90)N/cm(2) for the control group, 3.28 (0.55)N/cm(2) for the untreated tracheal banding group, 6.18 (0.71)N/cm(2) for the acute treatment group, and 7.09 (0.59)N/cm(2) for the chronic treatment group. CONCLUSIONS: Diaphragmatic dysfunction associated with chronic airflow obstruction improves with both the acute and chronic administration of salbutamol. The mechanisms involved in respiratory muscle dysfunction warrant further study.


Subject(s)
Adrenergic beta-Agonists/therapeutic use , Airway Obstruction/drug therapy , Albuterol/therapeutic use , Diaphragm/drug effects , Adrenergic beta-Agonists/pharmacology , Airway Obstruction/blood , Airway Obstruction/physiopathology , Albuterol/pharmacology , Alkalosis/blood , Alkalosis/etiology , Alkalosis/prevention & control , Animals , Chronic Disease , Diaphragm/physiopathology , Drug Evaluation, Preclinical , Hypercapnia/blood , Hypercapnia/etiology , Hypercapnia/prevention & control , Male , Muscle Contraction/drug effects , Muscle Relaxation/drug effects , Random Allocation , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL