Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Curr Alzheimer Res ; 16(9): 815-820, 2019.
Article in English | MEDLINE | ID: mdl-31660831

ABSTRACT

BACKGROUND: Many factors are involved in Alzheimer's Disease (AD) such as amyloid plaques, neurofibrillary tangles, cholinergic deficit and oxidative stress. To counter the complexity of the disease the new approach for drug development is to create a single molecule able to act simultaneously on different targets. OBJECTIVE: We conceived eight drug likeliness compounds targeting the inhibition of cholinesterases and the scavenging of radicals. METHODS: We synthesised the new molecules by the Passerini multicomponent reaction and evaluated their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) as well as their antioxidant activities by the Oxygen Radical Absorbance Capacity (ORAC) assay. The lipinski's rule for drug likeness and in silico ADME prediction was also performed. RESULTS: Compounds 4f [IC50 (EeAChE) = 0.30 µM; IC50 (eqBuChE) = 0.09 µM; ORAC = 0.64 TE] and 4h [IC50 (EeAChE) = 1 µM; IC50 (eqBuChE) = 0.03 µM; ORAC = 0.50 TE] were identified as hits for further development. CONCLUSION: The Passerini reaction allowed us the facile synthesis of ditarget molecules of interest for the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Chromones/pharmacology , Donepezil/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Chromones/chemical synthesis , Donepezil/chemical synthesis , Drug Evaluation, Preclinical , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/pharmacology , Humans
2.
Bioorg Chem ; 91: 103205, 2019 10.
Article in English | MEDLINE | ID: mdl-31446330

ABSTRACT

In this work we describe the synthesis, Ca+2 channel blockade capacity and antioxidant power of N3,N5-bis(2-(5-methoxy-1H-indol-3-yl)ethyl)-2,6-dimethyl-4-aryl-1,4-dihydropyridine-3,5-dicarboxamides 1-9, a number of multi-target small 1,4-dihydropyridines (DHP), designed by juxtaposition of melatonin and nimodipine. As a result, we have identified antioxidant DHP 7 (Ca2+ channel blockade: 55%, and 8.78 Trolox/Equivalents), the most balanced DHP analyzed here, for potential Alzheimer's disease therapy.


Subject(s)
Alzheimer Disease/drug therapy , Antioxidants/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels/chemistry , Calcium/metabolism , Dihydropyridines/pharmacology , Neuroblastoma/drug therapy , Humans , Melatonin/pharmacology , Neuroblastoma/pathology , Nimodipine/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL