Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sci Rep ; 14(1): 8166, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589455

ABSTRACT

This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.


Subject(s)
Fibroins , Hyperthermia, Induced , Tragacanth , Tissue Scaffolds , Hydrogels , Magnetic Phenomena
2.
Sci Rep ; 13(1): 20845, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012184

ABSTRACT

In this research work, a magnetic nanobiocomposite is designed and presented based on the extraction of flaxseed mucilage hydrogel, silk fibroin (SF), and Fe3O4 magnetic nanoparticles (Fe3O4 MNPs). The physiochemical features of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite are evaluated by FT-IR, EDX, FE-SEM, TEM, XRD, VSM, and TG technical analyses. In addition to chemical characterization, given its natural-based composition, the in-vitro cytotoxicity and hemolysis assays are studied and the results are considerable. Following the use of highest concentration of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite (1.75 mg/mL) and the cell viability percentage of two different cell lines including normal HEK293T cells (95.73%, 96.19%) and breast cancer BT549 cells (87.32%, 86.9%) in 2 and 3 days, it can be inferred that this magnetic nanobiocomposite is biocompatible with HEK293T cells and can inhibit the growth of BT549 cell lines. Besides, observing less than 5% of hemolytic effect can confirm its hemocompatibility. Furthermore, the high specific absorption rate value (107.8 W/g) at 200 kHz is generated by a determined concentration of this nanobiocomposite (1 mg/mL). According to these biological assays, this magnetic responsive cytocompatible composite can be contemplated as a high-potent substrate for further biomedical applications like magnetic hyperthermia treatment and tissue engineering.


Subject(s)
Fibroins , Flax , Hyperthermia, Induced , Humans , Fibroins/chemistry , Hydrogels/chemistry , Biocompatible Materials/chemistry , Spectroscopy, Fourier Transform Infrared , HEK293 Cells , Magnetic Phenomena , Silk/chemistry
3.
Int J Biol Macromol ; 253(Pt 4): 127005, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37734527

ABSTRACT

A magnetic xanthan hydrogel/silk fibroin nanobiocomposite (XG hydrogel/SF/Fe3O4) was designed, fabricated, and characterized using analyzing methods such as FT-IR, EDX, FE-SEM, XRD, TGA, and VSM to evaluate the exact structure of product nanobiocomposite. The FE-SEM images reveal the presence of spherical shapes exhibiting a narrow size range and homogeneous distribution, measuring between 30 and 35 nm in diameter. The VSM analysis demonstrates the superparamagnetic properties of the XG hydrogel/SF/Fe3O4 nanobiocomposite, exhibiting a magnetic saturation of 54 emu/g at room temperature. The biological response of the nanobiocomposite scaffolds was assessed through cell viability and red blood cell hemolytic assays. MCF10A cells were exposed to a concentration of 1.75 mg/mL of the nanobiocomposite, and after 2 and 3 days, the cell viability was found to be 96.95 % and 97.02 %, respectively. The hemolytic effect was nearly 0 % even at higher concentrations (2 mg/mL). Furthermore, the magnetic nanobiocomposite showed excellent potential for hyperthermia applications, with a maximum specific absorption rate of 7 W/g for 1 mg/mL of the sample under a magnetic field in different frequencies (100, 200, 300, and 400 MHz) and 5 to 20 min time intervals.


Subject(s)
Fibroins , Hyperthermia, Induced , Nanocomposites , Hydrogels/pharmacology , Hydrogels/chemistry , Fibroins/pharmacology , Fibroins/chemistry , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Magnetic Phenomena
4.
J Basic Microbiol ; 63(12): 1373-1382, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37699755

ABSTRACT

Nanotechnology covers many disciplines, including the biological sciences. In this study, selenium nanoparticles (Se-NPs) were synthesized using Artemisia annua extract and investigated against clinical strains of klebsiella pneumoniae (K. pneumoniae) for their anti-biofilm effects. In this experimental study, from May 1998 to September 1998, 50 clinical samples of blood, urine, and sputum were collected, and K. pneumoniae strains were isolated using microbiological methods. Subsequently, the antibacterial effects of Se-NPs at concentrations of 12-25-50-100/5-6/3-25/125 µg/mL were studied. Finally, biofilm-producing strains were isolated, and the expression of mrkA biofilm gene was studied in real-time strains treated with Se-NPs using real-time polymerase chain reaction (PCR). Out of 50 clinical samples, 20 strains of K. pneumoniae were isolated. Minimum inhibitory concentration (MIC) results of Se-NPs showed that Se-NPs were capable of significant cell killing. Real-time PCR results also showed that mrkA gene expression was significantly reduced in strains treated with Se-NPs. According to this study, Se-NPs could reduce bacterial growth and biofilm formation, therefore, could be considered a candidate drug in the medical application for infections caused by K. pneumoniae.


Subject(s)
Nanoparticles , Selenium , Selenium/pharmacology , Klebsiella pneumoniae , Biofilms , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
5.
Colloids Surf B Biointerfaces ; 228: 113430, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37418814

ABSTRACT

Generally, hyperthermia is referred to the composites capability to increase local temperature in such a way that the generated heat would lead to cancerous or bacteria cells destruction, with minimum damage to normal tissue cells. Many different materials have been utilized for hyperthermia application via different heat generating methods. Carbon-based nanomaterials consisting of graphene oxide (GO), carbon nanotube (CNT), carbon dot (CD) and carbon quantum dot (CQD), nanodiamond (ND), fullerene and carbon fiber (CF), have been studied significantly for different applications including hyperthermia due to their biocompatibility, biodegradability, chemical and physical stability, thermal and electrical conductivity and in some cases photothermal conversion. Therefore, in this comprehensive review, a structure-based view on carbon nanomaterials application in hyperthermia therapy of cancer and bacteria via various methods such as optical, magnetic, ultrasonic and radiofrequency-induced hyperthermia is presented.


Subject(s)
Hyperthermia, Induced , Nanocomposites , Nanotubes, Carbon , Neoplasms , Humans , Hyperthermia, Induced/methods , Neoplasms/therapy , Hot Temperature
6.
J Biotechnol ; 367: 71-80, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37028560

ABSTRACT

In this work, a magnetic nanobiocomposite scaffold based on carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and magnetite nanoparticles was fabricated. The structural properties of this new magnetic nanobiocomposite were characterized by various analyses such as FT-IR, XRD, EDX, FE-SEM, TGA and VSM. According to the particle size histogram, most of the particles were between 55 and 77 nm and the value of saturation magnetization of this nanobiocomposite was reported 41.65 emu.g- 1. Hemolysis and MTT tests showed that the designed magnetic nanobiocomposite was compatible with the blood. In addition, the viability percentage of HEK293T normal cells did not change significantly, and the proliferation rate of BT549 cancer cells decreased in its vicinity. EC50 values for HEK293T normal cells after 48 h and 72 h were 3958 and 2566, respectively. Also, these values for BT549 cancer cells after 48 h and 72 h were 0.4545 and 0.9967, respectively. The efficiency of fabricated magnetic nanobiocomposite was appraised in a magnetic fluid hyperthermia manner. The specific absorption rate (SAR) of 69 W/g (for the 1 mg/mL sample at 200 kHz) was measured under the alternating magnetic field (AMF).


Subject(s)
Fibroins , Hyperthermia, Induced , Neoplasms , Humans , Fibroins/pharmacology , Fibroins/chemistry , Hydrogels , Carboxymethylcellulose Sodium/pharmacology , Carboxymethylcellulose Sodium/chemistry , Spectroscopy, Fourier Transform Infrared , HEK293 Cells , Magnetic Phenomena , Neoplasms/drug therapy
7.
Comput Biol Med ; 157: 106771, 2023 05.
Article in English | MEDLINE | ID: mdl-36924733

ABSTRACT

In this study, simulation of magnetic nanoparticle hyperthermia is performed on a 3D tumor model constructed based on a CT image of a tumor. In the first step, magnetic nanoparticles are injected into two points of the tumor tissue with the same parameters. Results show that temperature profiles in the vicinity of the injection points are not similar due to the presence of blood capillaries. Therefore, the effects of using dissimilar injection parameters for the two injection points on the heating pattern and damage fraction of the tumor are investigated. The results demonstrate that using dissimilar values for injection parameters such as injection rate, injection time, and nanofluid volume fraction is a way to achieve a higher damage fraction of the tumor cells, but, the asynchronous injections strategy does not lead to more significant damage to the tumor. None of the cases showed significant improvement in the uniformity of the temperature distribution, suggesting that conducting injections under the same conditions is the best way to create an almost uniform temperature profile. The numerical simulation validation results also advocate the accuracy of the model used in this study. This research can serve as a guide for designing parameters for future studies.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Hyperthermia, Induced/methods , Magnetite Nanoparticles/therapeutic use , Capillaries , Models, Theoretical , Computer Simulation
8.
Int J Biol Macromol ; 224: 1478-1486, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36328271

ABSTRACT

In the current study, sodium alginate (SA) and tannic acid (TA), in the presence of calcium chloride as a cross-linker, were used to fabricate a nanocomposite scaffold. With the addition of silk fibroin (SF), the strength of the synthesized composite was increased. Fe3O4 magnetic nanoparticles (MNPs) led to the usage of this magnetic nanocomposite in hyperthermia applications. Various properties of this scaffold were investigated by field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA), Fourier-transformed infrared (FT-IR), energy dispersive X-Ray (EDX), Vibrating- sample magnetometer (VSM). A hemolytic assay of this magnetic nanocomposite demonstrated that about 100 % of red blood cells (RBCs) survived at a concentration of 2 mg/ml, proving this scaffold is hemocompatible. Furthermore, an MTT assay was utilized to assess the cytotoxicity of the synthesized magnetic nanocomposite. Finally, the hyperthermia behavior of the fabricated magnetic nanocomposite was evaluated, and the specific absorption rate (SAR) was 73.53 W/g. The proposed nanocomposite is a good candidate for wound dressing applications in future studies.


Subject(s)
Fibroins , Hyperthermia, Induced , Nanocomposites , Hydrogels , Alginates , Spectroscopy, Fourier Transform Infrared , Magnetic Phenomena
9.
Carbohydr Polym ; 300: 120246, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372507

ABSTRACT

This work represents a biocompatible magnetic nanobiocomposite prepared by the composition of chitosan (CS) hydrogel, silk fibroin (SF), graphene oxide (GO), and Fe3O4 NPs. Terephthaloyl thiourea was applied as a cross-linking agent to cross-link the CS strings. The CS hydrogel/SF/GO/Fe3O4 nanobiocomposite with many characteristics, such as high structural uniformity, thermal stability, biocompatibility, and stability in an aqueous solution. Various characteristics of this novel magnetic nanobiocomposite were distinguished by FT-IR, EDX, FE-SEM, XRD, TGA, and VSM analysis. The FE-SEM images were taken to evaluate the size distribution of the magnetic nanoparticles (MNPs) between 39.9 and 73.3 nm as well. The performance of the prepared nanobiocomposite was assessed by the magnetic fluid hyperthermia process. Under the alternating magnetic field (AMF), the mean value of the specific absorption rate (SAR) was determined at 43.15 w/g.


Subject(s)
Chitosan , Fibroins , Hyperthermia, Induced , Chitosan/chemistry , Fibroins/chemistry , Hydrogels/chemistry , Spectroscopy, Fourier Transform Infrared , Magnetic Phenomena
10.
J Therm Biol ; 110: 103371, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36462885

ABSTRACT

Numerical simulation of magnetic nanoparticle hyperthermia for cancer treatment has been investigated in this study. The presented simulation did account for the effects of fluid flow, mass flow, and heat transfer during the MNP hyperthermia. The tumor was assumed to be a porous slab, 30% of which had been necrosed previously, with two capillaries, where magnetic nanoparticles were added into the bloodstream and distributed in the tumor by blood flow through capillaries. Fluid flow, mass transfer by capillaries, and interstitial tissues have been coupled in this study. Furthermore, tumor tissue damage has been calculated using a thermal damage indicator. The goal of this research is to find an optimum injection duration and exposure time in order to maximize hyperthermia treatment effectiveness using the BOBYQA optimization method. At the end of the 1-h time hyperthermia treatment, most of the non-necrotic tissue of the tumor were damaged. Moreover, the fraction of damaged tissue increased to more than 90% in some parts of the tumor. Results of this study indicate that MNP hyperthermia with the proposed setup can effectively damage the tumor in just one session, making it more susceptible to complementary therapies such as radiotherapy or chemotherapy.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Humans , Magnetite Nanoparticles/therapeutic use , Hot Temperature , Hyperthermia
11.
J Biotechnol ; 358: 55-63, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36087782

ABSTRACT

For biotechnology applications, a novel nanobiocomposite was synthesized based on modification of graphene oxide (GO) by extracted silk fibroin (SF), natural polymer pectin (Pec) and zinc chromite (ZnCr2O4) nanoparticles (NPs). The structure and properties of hybrid nanobiocomposite GO-Pec/SF/ZnCr2O4 such as thermal stability, less toxicity, biocompatibility, antibacterial, and biodegradable were proved by using field emission scanning electron microscope (FE-SEM), Fourier-transformed infrared (FT-IR), Energy dispersive X-ray spectroscopy (EDS), thermal gravimetric analysis (TGA), and X-Ray diffraction (XRD). According to the biological features of substances, the GO-Pec/SF/ZnCr2O4 nanobiocomposite shows perfect results in MTT (83.71 %) and Hemolysis (16.52 %) assays. accordingly, mentioned properties of this nanobiocomposite can be used as a scaffold for medical applications.


Subject(s)
Fibroins , Nanocomposites , Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/chemistry , Fibroins/chemistry , Graphite , Nanocomposites/chemistry , Pectins , Spectroscopy, Fourier Transform Infrared , Zinc
12.
Sci Rep ; 12(1): 15431, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104466

ABSTRACT

In this study, the main focus was on designing and synthesizing a novel magnetic nanobiocomposite and its application in hyperthermia cancer treatment. Regarding this aim, sodium alginate (SA) hydrogel with CaCl2 cross-linker formed and modified by silk fibroin (SF) natural polymer and halloysite nanotubes (HNTs), followed by in situ Fe3O4 magnetic nanoparticles preparation. No important differences were detected in red blood cells (RBCs) hemolysis, confirming the high blood compatibility of the treated erythrocytes with this nanobiocomposite. Moreover, the synthesized SA hydrogel/SF/HNTs/Fe3O4 nanobiocomposite does not demonstrate toxicity toward HEK293T normal cell line after 48 and 72 h. The anticancer property of SA hydrogel/SF/HNTs/Fe3O4 nanobiocomposites against breast cancer cell lines was corroborated. The magnetic saturation of the mentioned magnetic nanobiocomposite was 15.96 emu g-1. The specific absorption rate (SAR) was measured to be 22.3 W g-1 by applying an alternating magnetic field (AMF). This novel nanobiocomposite could perform efficiently in the magnetic fluid hyperthermia process, according to the obtained results.


Subject(s)
Fibroins , Hyperthermia, Induced , Nanocomposites , Nanotubes , Alginates , Clay , HEK293 Cells , Humans , Hydrogels , Magnetic Phenomena , Nanocomposites/therapeutic use
13.
J Environ Manage ; 324: 116358, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36179472

ABSTRACT

Wastewater containing pharmaceutical contaminants has become a critical environmental concern due to rising population and drug consumption caused by increased life expectancy. Diclofenac (DCF) is one of the most applicable drugs for veterinary and human health purposes, polluting surface waters in different ways. This work aims to synthesize a novel pectin-graphene oxide (GO)-magnesium ferrite (MgFe2O4)-zinc oxide (ZnO) nanocomposite (PGMZ) for photocatalytic degradation of DCF in an aquatic environment under visible light irradiation. The single and synthesized nanocomposites were characterized by several analyses, confirming the successful synthesis of the nanocomposite. Effects of four operation conditions, including nanocomposite dosage (1-1.25 g/L), nanocomposite type, initial contaminant concentration (35-55 mg/L), and solution pH (3-11), were investigated on the degradation performance. From the kinetic study, the effect of mixing two composites, i.e., synergy percentage, was 38.7% when ZnO-MgFe2O4 particles were added to the GO-pectin structure. By examining the effect of different free radical enhancers and scavenging compounds on the DCF photodegradation, the most influential scavenging components were in the following order; NaCl > Na2CO3 > Na2SO4, while K2S2O8 was a better enhancer than H2O2 at their optimal concentration. Finally, the PGMZ photocatalyst was reused six times with a reduction of about 20% in its removal efficiency, indicating excellent reusability and stability.


Subject(s)
Nanocomposites , Zinc Oxide , Humans , Zinc Oxide/chemistry , Diclofenac , Pectins , Hydrogen Peroxide , Nanocomposites/chemistry , Light , Water , Catalysis
14.
Int J Biol Macromol ; 217: 1-18, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35809676

ABSTRACT

There is a growing demand for biomaterials developing with novel properties for biomedical applications hence, hydrogels with 3D crosslinked polymeric structures obtained from natural polymers have been deeply inspected in this field. Pectin a unique biopolymer found in the cell walls of fruits and vegetables is extensively used in the pharmaceutical, food, and textile industries due to its ability to form a thick gel-like solution. Considering biocompatibility, biodegradability, easy gelling capability, and facile manipulation of pectin-based biomaterials; they have been thoroughly investigated for various potential biomedical applications including drug delivery, wound healing, tissue engineering, creation of implantable devices, and skin-care products.


Subject(s)
Biocompatible Materials , Pectins , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Drug Delivery Systems , Hydrogels/chemistry , Pectins/chemistry , Polymers , Tissue Engineering
15.
Int J Biol Macromol ; 192: 7-15, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34571124

ABSTRACT

Natural polymers are at the center of materials development for biomedical and biotechnological applications based on their biocompatibility, low-toxicity and biodegradability. In this study, a novel nanobiocomposite based on cross-linked pectin-cellulose hydrogel, silk fibroin, and Mg(OH)2 nanoparticles was designed and synthesized. After extensive physical-chemical characterization, the biological response of pectin-cellulose/silk fibroin/Mg(OH)2 nanobiocomposite scaffolds was evaluated by cell viability, red blood cells hemolytic and anti-biofilm assays. After 3 days and 7 days, the cell viability of this nanobiocomposite scaffold was 65.5% and 60.5% respectively. The hemolytic effect was below 20%. Furthermore, the presence of silk fibroin and Mg(OH)2 nanoparticles allowed to enhance the anti-biofilm activity, inhibiting the P. aeruginosa biofilm formation.


Subject(s)
Biocompatible Materials/chemistry , Cellulose/chemistry , Fibroins/chemistry , Hydrogels/chemistry , Magnesium Hydroxide/chemistry , Nanoparticles/chemistry , Pectins/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Nanocomposites/chemistry , Polymers , Spectrum Analysis
16.
J Nanobiotechnology ; 19(1): 239, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34380469

ABSTRACT

BACKGROUND: Applied nanomaterials in targeted drug delivery have received increased attention due to tangible advantages, including enhanced cell adhesion and internalization, controlled targeted release, convenient detection in the body, enhanced biodegradation, etc. Furthermore, conjugation of the biologically active ingredients with the drug-containing nanocarriers (nanobioconjugates) has realized impressive opportunities in targeted therapy. Among diverse nanostructures, halloysite nanotubes (NHTs) with a rolled multilayer structure offer great possibilities for drug encapsulation and controlled release. The presence of a strong hydrogen bond network between the rolled HNT layers enables the controlled release of the encapsulated drug molecules through the modulation of hydrogen bonding either in acidic conditions or at higher temperatures. The latter can be conveniently achieved through the photothermal effect via the incorporation of plasmonic nanoparticles. RESULTS: The developed nanotherapeutic integrated natural halloysite nanotubes (HNTs) as a carrier; gold nanoparticles (AuNPs) for selective release; docetaxel (DTX) as a cytotoxic anticancer agent; human IgG1 sortilin 2D8-E3 monoclonal antibody (SORT) for selective targeting; and 3-chloropropyltrimethoxysilane as a linker for antibody attachment that also enhances the hydrophobicity of DTX@HNT/Au-SORT and minimizes DTX leaching in body's internal environment. HNTs efficiently store DTX at room temperature and release it at higher temperatures via disruption of interlayer hydrogen bonding. The role of the physical expansion and disruption of the interlayer hydrogen bonding in HNTs for the controlled DTX release has been studied by dynamic light scattering (DLS), electron microscopy (EM), and differential scanning calorimetry (DSC) at different pH conditions. HNT interlayer bond disruption has been confirmed to take place at a much lower temperature (44 °C) at low pH vs. 88 °C, at neutral pH thus enabling the effective drug release by DTX@HNT/Au-SORT through plasmonic photothermal therapy (PPTT) by light interaction with localized plasmon resonance (LSPR) of AuNPs incorporated into the HNT pores. CONCLUSIONS: Selective ovarian tumor targeting was accomplished, demonstrating practical efficiency of the designed nanocomposite therapeutic, DTX@HNT/Au-SORT. The antitumor activity of DTX@HNT/Au-SORT (apoptosis of 90 ± 0.3%) was confirmed by in vitro experiments using a caov-4 (ATCC HTB76) cell line (sortilin expression > 70%) that was successfully targeted by the sortilin 2D8-E3 mAb, tagged on the DTX@HNT/Au.


Subject(s)
Antineoplastic Agents/chemistry , Clay/chemistry , Docetaxel/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Docetaxel/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Female , Humans , Nanocomposites/chemistry , Neoplasms , Ovarian Neoplasms/drug therapy , Particle Size
17.
J Reprod Immunol ; 143: 103244, 2021 02.
Article in English | MEDLINE | ID: mdl-33186834

ABSTRACT

Recent molecular investigations have significantly developed our knowledge of the characteristics of the reproductive microbiome and their associations with host responses to provide an ideal milieu for the development of the embryo during the peri-implantation period and throughout pregnancy as well as to provide a successful in vitro fertilization and appropriate reproductive outcomes. In this context, the establishment of microbial homeostasis in the female reproductive tract, in various physiological periods, is a substantial challenge, which appears the application of probiotics can facilitate the achievement of this goal. So that, currently, probiotics due to its safe and natural features can be considered as a novel biotherapeutic approach. In this review, we comprehensively discuss the bacterial, fungal, and viral diversity detected in the reproductive tract, and their associations with the establishment of dysbiosis/eubiosis conditions as well as we present the significant outcomes on probiotic intervention as an efficient biotherapeutic strategy for management of gestational disorders and improve pregnancy outcomes.


Subject(s)
Dysbiosis/diet therapy , Genitalia, Female/microbiology , Microbiota/immunology , Pregnancy Complications/diet therapy , Probiotics/therapeutic use , Dietary Supplements , Dysbiosis/immunology , Dysbiosis/microbiology , Female , Genitalia, Female/immunology , Humans , Pregnancy , Pregnancy Complications/immunology , Pregnancy Complications/microbiology , Pregnancy Outcome
18.
Front Chem ; 8: 615, 2020.
Article in English | MEDLINE | ID: mdl-32850642

ABSTRACT

Fe3O4@PVA-Cu nanocomposite was introduced as an affordable catalyst for selective oxidation of alcohols into various aldehydes and ketones. The synthesized nanocomposite was characterized by applying essential analyses. The peaks that are appeared in FT-IR spectroscopy confirmed the production of the Fe3O4@PVA-Cu nanocomposite. In addition, EDX analysis proved the presence of oxygen, carbon, iron, and copper elements in the catalyst. Further, TGA analysis showed high thermal stability of the nanocomposite. VSM technique was applied to examine the magnetic property of the nanocomposite. The results demonstrated a high magnetic property in the catalyst, which enables easy separation of it from the reaction solution. TEM and SEM imaging showed the nanoscale size of the particles (~20 nm) in the catalyst. Additionally, XRD data was compatible with that of Fe3O4 nanoparticles. The application of the nanocomposite has been studied in the selective oxidation of alcohols in the presence of acetonitrile as solvent, and hydrogen peroxide as a supplementary oxidizing agent. This technique is remarkably facile and inexpensive. Further, the products showed high yields. In addition, the calculated TON and TOF values indicated the phenomenal efficiency of the nanocomposite in preparation of targeted products.

19.
J Pept Sci ; 26(10): e3277, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32729203

ABSTRACT

Herein, we make an effort to enhance the antimicrobial activity of levofloxacin (LVX) antibiotic via conjugation to a cell-penetrating peptide (CPP) including Cys-Gly-Ala-Phe-Pro-His-Arg. For this purpose, cysteine is used as a linker between the LVX and CPP chain, and two heterogeneous nanoscale catalytic systems are employed as the substantial alternatives for traditional peptide coupling reagents like N,N,N',N'-tetramethyl-O-(benzotriazol-1-yl)uronium tetrafluoroborate (TBTU). Briefly, it has been found out that the antimicrobial potency of the synthesized CPP-LVX conjugate (on the gram-positive and gram-negative bacteria) is noticeably enhanced (~20% more). It has been revealed via zone of inhibition (ZOI) and optical density (OD) evaluations. As a convenient method for making this type of the effective conjugations, ultrasound waves (with a specific frequency and power density) activate the catalytic sites of the heterogeneous nanoparticles. Through this synergistic effect, peptide/amide bond is formed during a short time (10 min), and high reaction yield (>90%) is obtained under mild conditions. Moreover, as a simple purification process, the catalyst nanoparticles are collected and separated through their high magnetic property.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell-Penetrating Peptides/pharmacology , Levofloxacin/pharmacology , Nanoparticles/chemistry , Ultrasonic Waves , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Catalysis , Cell Survival/drug effects , Cell-Penetrating Peptides/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Levofloxacin/chemistry , Magnetic Phenomena , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects
20.
Int J Biol Macromol ; 140: 407-414, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31425760

ABSTRACT

In this work, the chemical cross-linked interaction between chitosan polymeric chains and synthetic terephthaloyl diisothiocyanate as a cross-linker was accomplished in order to fabricate three dimensional cross-linked chitosan hydrogel. This cross-linked hydrogel with considerable characteristics including high stability and homogeneity in aqueous solution (water) and high porosity was applied as new substrate for generation of new magnetic terephthaloyl thiourea cross-linked chitosan nanocomposite. The features of this new magnetic nanocomposite were characterized by FT-IR, EDX, FE-SEM, TEM and VSM analysis. The Size distribution of nanoparticles according to the size histogram of FE-SEM images was estimated between 30 and 40 nm. The performance of designed magnetic nanocomposite was evaluated by magnetic fluid hyperthermia procedure. Under the alternating magnetic field (AMF), the specific absorption rate (66.92 w·g-1) was determined and as well, its saturation magnetization value was reported 78.43 emu·g-1.


Subject(s)
Chitosan/chemistry , Hydrogels/chemistry , Magnetite Nanoparticles/chemistry , Neoplasms/therapy , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/chemical synthesis , Chitosan/pharmacology , Humans , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Hyperthermia, Induced/methods , Nanocomposites/chemistry , Phthalic Acids/chemical synthesis , Phthalic Acids/chemistry , Spectroscopy, Fourier Transform Infrared , Thiourea/chemical synthesis , Thiourea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL