Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Neural Eng ; 17(1): 016032, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31726439

ABSTRACT

OBJECTIVE: Low levels of alpha activity (8-13Hz) mirror a state of enhanced responsiveness, whereas high levels of alpha are a state of reduced responsiveness. Tinnitus is accompanied by reduction of alpha activity in the perisylvian regions compared to normal hearing controls. This reduction might be a key mechanism in the chain of reactions leading to tinnitus. We devised a novel spatial filter as an on-line source monitoring method, which can be used to control alpha activity in the primary auditory cortex. In addition, we designed an innovative experimental procedure to enable suppression of visual and somatosensory alpha, facilitating auditory alpha control during alpha neurofeedback. APPROACH: An amplitude-modulated auditory stimulation with 40 Hz modulation frequency and 1000 Hz carrier frequency specifically activates the primary auditory cortex. The topography of 40 Hz oscillation depicts the activity of the auditory cortices. We used this map as a spatial filter, which passes the activity originating from the auditory cortex. To suppress superposition of auditory alpha by somatosensory and visual alpha, we used a continuous tactile jaw-stimulation and visual stimulation protocol to suppress somatosensory alpha of regions adjacent to the auditory cortex and visual alpha for local regulation of auditory alpha activity only. MAIN RESULTS: This novel spatial filter for online detection of auditory alpha activity and the usage of multi-sensory stimulation facilitate the appearance of alpha activity from the auditory cortex at the sensor level. SIGNIFICANCE: The proposed procedure can be used in an EEG-neurofeedback-treatment approach allowing online auditory alpha self-regulation training in patients with chronic tinnitus.


Subject(s)
Acoustic Stimulation/methods , Alpha Rhythm/physiology , Auditory Cortex/physiology , Computer Systems , Hearing/physiology , Tinnitus/physiopathology , Adult , Chronic Disease , Electroencephalography/methods , Humans , Male , Middle Aged , Tinnitus/diagnosis
2.
Appetite ; 112: 188-195, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28131758

ABSTRACT

Obese subjects who achieve weight loss show increased functional connectivity between dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC), key areas of executive control and reward processing. We investigated the potential of real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training to achieve healthier food choices by enhancing self-control of the interplay between these brain areas. We trained eight male individuals with overweight or obesity (age: 31.8 ± 4.4 years, BMI: 29.4 ± 1.4 kg/m2) to up-regulate functional connectivity between the dlPFC and the vmPFC by means of a four-day rt-fMRI neurofeedback protocol including, on each day, three training runs comprised of six up-regulation and six passive viewing trials. During the up-regulation runs of the four training days, participants successfully learned to increase functional connectivity between dlPFC and vmPFC. In addition, a trend towards less high-calorie food choices emerged from before to after training, which however was associated with a trend towards increased covertly assessed snack intake. Findings of this proof-of-concept study indicate that overweight and obese participants can increase functional connectivity between brain areas that orchestrate the top-down control of appetite for high-calorie foods. Neurofeedback training might therefore be a useful tool in achieving and maintaining weight loss.


Subject(s)
Appetite Regulation , Brain , Cues , Food , Neurofeedback , Obesity/therapy , Self-Control/psychology , Adult , Body Mass Index , Brain Mapping , Choice Behavior/physiology , Energy Intake , Food Preferences/physiology , Humans , Learning/physiology , Magnetic Resonance Imaging , Male , Obesity/psychology , Overweight , Prefrontal Cortex , Reward , Snacks
SELECTION OF CITATIONS
SEARCH DETAIL