Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
AAPS PharmSciTech ; 24(8): 240, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989918

ABSTRACT

The objective of the present research was to develop fluconazole-loaded transferosomal bigels for transdermal delivery by employing statistical optimization (23 factorial design-based). Thin-film hydration was employed to prepare fluconazole-loaded transferomal suspensions, which were then incorporated into bigel system. A 23 factorial design was employed where ratios of lipids to edge activators, lipids (soya lecithin to cholesterol), and edge activators (sodium deoxycholate to Tween 80) were factors. Ex vivo permeation flux (Jss) of transferosomal bigels across porcine skin was analyzed as response. The optimal setting for optimized formulation (FO) was A= 4.96, B= 3.82, and C= 2.16. The optimized transferosomes showed 52.38 ± 1.76% DEE, 76.37 nm vesicle size, 0.233 PDI, - 20.3 mV zeta potential, and desirable deformability. TEM of optimized transferosomes exhibited a multilamelar structure. FO bigel's FE-SEM revealed a globule-shaped vesicular structure. Further, the optimized transferosomal suspension was incorporated into thyme oil (0.1% w/w)-containing bigel (TO-FO). Ex vivo transdermal fluconazole permeation from different transferosomal bigels was sustained over 24 h. The highest permeation flux (4.101 µg/cm2/h) was estimated for TO-FO bigel. TO-FO bigel presented 1.67-fold more increments of antifungal activity against Candida albicans than FO bigel. The prepared thyme oil (0.1% w/w)-containing transfersomal bigel formulations can be used as topical delivery system to treat candida related fungal infections.


Subject(s)
Liposomes , Skin Absorption , Liposomes/metabolism , Fluconazole/metabolism , Administration, Cutaneous , Lecithins/metabolism , Drug Delivery Systems , Skin/metabolism
2.
Int J Biol Macromol ; 154: 466-476, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32194106

ABSTRACT

Mucosal administration of vaccine can produce a strong immune response. Antigens adhere to "M-cells", present at the intestinal mucosa and the M-cells produce immunity after actively transporting luminal antigens to the underlying immune cells. The objective of the present study was to prepare and characterize alginate coated chitosan nanoparticles (ACNPs) loaded with HBsAg as an antigen to produce immunity; additionally anchored with lipopolysaccharide (LPS) as an adjuvant. Ionic gelation method was used to prepare chitosan nanoparticles (CNPs) which were loaded with HBsAg and stabilized by alginate coating to protect from gastric environment. Results showed that the prepared LPS-HB-ACNPs were small and spherical with mean particle size 605.23 nm, polydispersity index 0.234 and Zeta potential -26.2 mV and could effectively protect antigen at GIT in acidic medium. HB-ANCPs were stable during storage at 4 ± 1 and 27 ± 2 °C. Anchoring with LPS showed increased immunity as compared to other formulations. Additionally, NPs elicited significant sIgA at mucosal secretions and IgG antibodies in systemic circulation. Thus, the prepared LPS anchored alginate coated chitosan NPs may be a promising approach as a vaccine delivery system for oral mucosal immunization.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/immunology , Immunization , Lipoproteins/chemistry , Nanoparticles/chemistry , Administration, Oral , Adsorption , Animals , Drug Carriers/chemistry , Drug Liberation , Female , Hepatitis B Surface Antigens/administration & dosage , Hepatitis B Vaccines/administration & dosage , Hepatitis B Vaccines/chemistry , Hepatitis B Vaccines/immunology , Mice , Molecular Weight , Mucous Membrane/immunology , Particle Size
3.
Eur J Drug Metab Pharmacokinet ; 36(4): 237-41, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21713460

ABSTRACT

The in vivo assessment of percutaneous absorption of molecules is a very important step in the evaluation of any transdermal drug delivery system and a key goal in the design and optimization of transdermal dosage forms lies in understanding the factors that determine a good in vivo performance. The objective of the present investigation is to assess the in vivo performance of an optimized transdermal system of ondansetron hydrochloride in rabbits and to generate preclinical pharmacokinetic data. The pharmacokinetic performance of ondansetron hydrochloride following intravenous and transdermal administration was studied in rabbits following non compartmental pharmacokinetic analysis. The pharmacokinetic parameters such as area under the curve, elimination rate constant, elimination half life and mean residence time, were significantly (P < 0.01) different following transdermal administration compared to intravenous administration. Absolute bioavailability of the transdermal film studied was estimated to be 0.37 ± 0.06 which is quite low because a very high drug loading in the transdermal system was essential to achieve sufficient thermodynamic activity for transdermal permeation. Though in vivo studies in rabbits are found promising, investigations in healthy human subjects are essential to confirm the performance of the developed transdermal films.


Subject(s)
Adhesives/administration & dosage , Ondansetron/administration & dosage , Administration, Cutaneous , Animals , Biological Availability , Drug Delivery Systems , Drug Evaluation, Preclinical , Female , Male , Ondansetron/pharmacokinetics , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL