Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Cancer Res ; 30(2): 283-293, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37773633

ABSTRACT

PURPOSE: Pharmacologic ascorbate (P-AscH-) is hypothesized to be an iron (Fe)-dependent tumor-specific adjuvant to chemoradiation in treating glioblastoma (GBM). This study determined the efficacy of combining P-AscH- with radiation and temozolomide in a phase II clinical trial while simultaneously investigating a mechanism-based, noninvasive biomarker in T2* mapping to predict GBM response to P-AscH- in humans. PATIENTS AND METHODS: The single-arm phase II clinical trial (NCT02344355) enrolled 55 subjects, with analysis performed 12 months following the completion of treatment. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared across patient subgroups with log-rank tests. Forty-nine of 55 subjects were evaluated using T2*-based MRI to assess its utility as an Fe-dependent biomarker. RESULTS: Median OS was estimated to be 19.6 months [90% confidence interval (CI), 15.7-26.5 months], a statistically significant increase compared with historic control patients (14.6 months). Subjects with initial T2* relaxation < 50 ms were associated with a significant increase in PFS compared with T2*-high subjects (11.2 months vs. 5.7 months, P < 0.05) and a trend toward increased OS (26.5 months vs. 17.5 months). These results were validated in preclinical in vitro and in vivo model systems. CONCLUSIONS: P-AscH- combined with temozolomide and radiotherapy has the potential to significantly enhance GBM survival. T2*-based MRI assessment of tumor iron content is a prognostic biomarker for GBM clinical outcomes. See related commentary by Nabavizadeh and Bagley, p. 255.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , Biomarkers , Brain Neoplasms/drug therapy , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Glioblastoma/pathology , Magnetic Resonance Imaging , Temozolomide/therapeutic use
2.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138986

ABSTRACT

Glioblastoma (GBM), a highly lethal and aggressive central nervous system malignancy, presents a critical need for targeted therapeutic approaches to improve patient outcomes in conjunction with standard-of-care (SOC) treatment. Molecular subtyping based on genetic profiles and metabolic characteristics has advanced our understanding of GBM to better predict its evolution, mechanisms, and treatment regimens. Pharmacological ascorbate (P-AscH-) has emerged as a promising supplementary cancer therapy, leveraging its pro-oxidant properties to selectively kill malignant cells when combined with SOC. Given the clinical challenges posed by the heterogeneity and resistance of various GBM subtypes to conventional SOC, our study assessed the response of classical, mesenchymal, and proneural GBM to P-AscH-. P-AscH- (20 pmol/cell) combined with SOC (5 µM temozolomide and 4 Gy of radiation) enhanced clonogenic cell killing in classical and mesenchymal GBM subtypes, with limited effects in the proneural subtype. Similarly, following exposure to P-AscH- (20 pmol/cell), single-strand DNA damage significantly increased in classical and mesenchymal but not proneural GBM. Moreover, proneural GBM exhibited increased hydrogen peroxide removal rates, along with increased catalase and glutathione peroxidase activities compared to mesenchymal and classical GBM, demonstrating an altered H2O2 metabolism that potentially drives differential P-AscH- toxicity. Taken together, these data suggest that P-AscH- may hold promise as an approach to improve SOC responsiveness in mesenchymal GBMs that are known for their resistance to SOC.


Subject(s)
Antineoplastic Agents , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Hydrogen Peroxide/metabolism , Ascorbic Acid/pharmacology , Antioxidants , Chemoradiotherapy
3.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34639220

ABSTRACT

Interest in the use of pharmacological ascorbate as a treatment for cancer has increased considerably since it was introduced by Cameron and Pauling in the 1970s. Recently, pharmacological ascorbate has been used in preclinical and early-phase clinical trials as a selective radiation sensitizer in cancer. The results of these studies are promising. This review summarizes data on pharmacological ascorbate (1) as a safe and efficacious adjuvant to cancer therapy; (2) as a selective radiosensitizer of cancer via a mechanism involving hydrogen peroxide; and (3) as a radioprotector in normal tissues. Additionally, we present new data demonstrating the ability of pharmacological ascorbate to enhance radiation-induced DNA damage in glioblastoma cells, facilitating cancer cell death. We propose that pharmacological ascorbate may be a general radiosensitizer in cancer therapy and simultaneously a radioprotector of normal tissue.


Subject(s)
Ascorbic Acid/pharmacology , Hydrogen Peroxide/pharmacology , Neoplasms/radiotherapy , Oxidative Stress/drug effects , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Animals , Antioxidants/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Oxidants/pharmacology , Reactive Oxygen Species/metabolism
4.
Redox Biol ; 14: 417-422, 2018 04.
Article in English | MEDLINE | ID: mdl-29069637

ABSTRACT

Soft tissue sarcomas are a histologically heterogeneous group of rare mesenchymal cancers for which treatment options leading to increased overall survival have not improved in over two decades. The current study shows that pharmacological ascorbate (systemic high dose vitamin C achieving ≥ 20mM plasma levels) is a potentially efficacious and easily integrable addition to current standard of care treatment strategies in preclinical models of fibrosarcoma and liposarcoma both in vitro and in vivo. Furthermore, enhanced ascorbate-mediated toxicity and DNA damage in these sarcoma models were found to be dependent upon H2O2 and intracellular labile iron. Together, these data support the hypothesis that pharmacological ascorbate may represent an easily implementable and non-toxic addition to conventional sarcoma therapies based on taking advantage of fundamental differences in cancer cell oxidative metabolism.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Ascorbic Acid/therapeutic use , Deoxycytidine/analogs & derivatives , Hydrogen Peroxide/metabolism , Iron/metabolism , Radiation-Sensitizing Agents/therapeutic use , Sarcoma/therapy , Animals , Antimetabolites, Antineoplastic/pharmacology , Ascorbic Acid/pharmacology , Cell Line, Tumor , DNA Damage/drug effects , DNA Damage/radiation effects , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Female , Humans , Mice, Nude , Oxidation-Reduction , Radiation-Sensitizing Agents/pharmacology , Sarcoma/drug therapy , Sarcoma/radiotherapy , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL