Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Invest Ophthalmol Vis Sci ; 59(3): 1396-1409, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29625463

ABSTRACT

Purpose: To examine if light exposure exacerbates retinal neuronal loss induced by taurine depletion. Methods: Albino rats received ß-alanine in the drinking water to induce taurine depletion. One month later, half of the animals were exposed to white light (3000 lux) continuously for 48 hours and the rest remained in normal environmental conditions. A control group of animals nontreated with ß-alanine also was prepared, and half of them were exposed to light using the same protocol. All the animals were processed 2 months after the beginning of the experiment. Retinas were dissected as wholemounts and immunodetected with antibodies against Brn3a, melanopsin, S-opsin, and L-opsin to label different retinal populations: Brn3a+ retinal ganglion cells (RGCs) (image-forming RGCs), m+RGCs (non-image-forming RGCs), and S- and L/M-cones, respectively. Results: Light exposure did not affect the numbers of Brn3a+RGCs or m+RGCs but diminished the numbers of S- and L/M-cones and caused the appearance of rings devoid of cones, mainly in an "arciform" area in the superotemporal retina. Taurine depletion caused a diminution of all the studied populations, with m+RGCs the most affected, followed by S-cones. Light exposure under taurine depletion increased photoreceptor degeneration but did not seem to increase Brn3a+RGCs or m+RGCs loss. Conclusions: Our results document that taurine is necessary for cell survival in the rat retina and even more under light-induced photoreceptor degeneration. Thus, taurine supplementation may help to prevent retinal degenerations, especially those that commence with S-cone degeneration or in which light may be an etiologic factor, such as inherited retinal degenerations, AMD, or glaucoma.


Subject(s)
Light/adverse effects , Photoreceptor Cells, Vertebrate , Retinal Degeneration/metabolism , Retinal Ganglion Cells/pathology , Taurine/deficiency , Taurine/physiology , Animals , Cell Survival/physiology , Disease Models, Animal , Rats , Rats, Sprague-Dawley , Retinal Degeneration/etiology , beta-Alanine/pharmacology
2.
Cancer Chemother Pharmacol ; 80(3): 517-526, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28707014

ABSTRACT

PURPOSE: This study was conducted during the development of innovative treatment targeting the microenvironment of chondrosarcoma. In this context, MMP inhibitors were conjugated with a quaternary ammonium (QA) function as a targeting ligand to proteoglycans of chondrosarcoma extracellular matrix. Here we report the proof of concept of this strategy applied to the MMP13 inhibitor, doxycycline (Dox). METHODS: A quaternary ammonium derivative of the MMP13 inhibitor doxycycline (QA-Dox) was synthesized, and its anticancer activity was evaluated in the Swarm rat chondrosarcoma (SRC) model compared with the parent drug doxycycline, in vitro and in vivo. In vivo, dox and QA-Dox efficiency was assessed at equimolar doses according to a q4dx4 schedule by monitoring tumour volume by MRI and PG-targeted scintigraphy. Molecular mechanism (MMP13 expression, proteoglycan level) and histology studies were performed on tumours. RESULTS: The link of QA targeting function to Dox maintained the MMP13 inhibitory activity in vitro. Interestingly, the bacteriostatic activity was lost. SRC cells incubated with both drugs were blocked in S and G2 M phases. Tumour growth inhibition (confirmed by histology) was observed for both Dox and QA-Dox. Undesirable blood effects (leukocyte decrease) were reduced when Dox was targeted to tumour tissue using the QA function. CONCLUSIONS: In the SRC model, the MMP13 inhibitor Dox and its QA derivative are promising as adjuvant therapies for chondrosarcoma management.


Subject(s)
Ammonium Compounds/therapeutic use , Chondrosarcoma/drug therapy , Doxycycline/therapeutic use , Ammonium Compounds/administration & dosage , Ammonium Compounds/pharmacology , Chondrosarcoma/pathology , Doxycycline/administration & dosage , Doxycycline/pharmacology , Humans
3.
Mol Cancer Ther ; 15(11): 2575-2585, 2016 11.
Article in English | MEDLINE | ID: mdl-27573424

ABSTRACT

To date, surgery remains the only option for the treatment of chondrosarcoma, which is radio- and chemoresistant due in part to its large extracellular matrix (ECM) and poor vascularity. In case of unresectable locally advanced or metastatic diseases with a poor prognosis, improving the management of chondrosarcoma still remains a challenge. Our team developed an attractive approach of improvement of the therapeutic index of chemotherapy by targeting proteoglycan (PG)-rich tissues using a quaternary ammonium (QA) function conjugated to melphalan (Mel). First of all, we demonstrated the crucial role of the QA carrier for binding to aggrecan by surface plasmon resonance. In the orthotopic model of Swarm rat chondrosarcoma, an in vivo biodistribution study of Mel and its QA derivative (Mel-QA), radiolabeled with tritium, showed rapid radioactivity accumulation in healthy cartilaginous tissues and tumor after [3H]-Mel-QA injection. The higher T/M ratio of the QA derivative suggests some advantage of QA-active targeting of chondrosarcoma. The antitumoral effects were characterized by tumor volume assessment, in vivo 99mTc-NTP 15-5 scintigraphic imaging of PGs, 1H-HRMAS NMR spectroscopy, and histology. The conjugation of a QA function to Mel did not hamper its in vivo efficiency and strongly improved the tolerability of Mel leading to a significant decrease of side effects (hematologic analyses and body weight monitoring). Thus, QA conjugation leads to a significant improvement of the therapeutic index, which is essential in oncology and enable repeated cycles of chemotherapy in patients with chondrosarcoma. Mol Cancer Ther; 15(11); 2575-85. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/metabolism , Chondrosarcoma/metabolism , Proteoglycans/metabolism , Animals , Bone Neoplasms/diagnosis , Bone Neoplasms/drug therapy , Cell Line, Tumor , Chondrosarcoma/diagnosis , Chondrosarcoma/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Male , Melphalan/chemistry , Melphalan/pharmacology , Molecular Imaging/methods , Optical Imaging/methods , Quaternary Ammonium Compounds/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL