Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Type of study
Language
Affiliation country
Publication year range
1.
Medicina (Kaunas) ; 60(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38399492

ABSTRACT

Background and Objectives: Inflammation and oxidative stress have been described to reduce the chance for pregnancy instauration and maintenance. NOFLAMOX, a recently developed herbal preparation with recognized antioxidant and anti-inflammatory properties, can represent an interesting treatment to increase the chance of pregnancy, both physiological or after in vitro fertilization (IVF). The aim of this study was to assess NOFLAMOX's effect; a population with unexplained infertility was screened for the recently described IMMUNOX panel based on four immunological biomarkers with a prospective study approach. Materials and Methods: Patients with unexplained infertility and positive for at least one of the biomarkers of the IMMUNOX panel were included in this study and treated with NOFLAMOX for three months prior to an IVF cycle. Results: Eighty-six patients (n = 86) were screened with the IMMUNOX panel and the forty-seven (54.5%) found positive were included in this study. In more detail, 11 were positive for TNFα (23.4%), 18 (38.3%) for glycodelin (GLY), 29 (61.7%) for Total Oxidative Status (TOS), and 32 (68.1%) for Complement Activity Toxic Factor (CATF). After three months of treatment, a significant reduction in the number of IMMUNOX-positive patients was observable, with 26 patients who turned IMMUNOX-negative displaying a quantitative statistically significant variation of 100% (11/11), 38.9% (7/18), 65.5% (18/29), and 75% (24/32), for TNFα, glycodelin, TOS, and CATF, respectively. Followed in the subsequent IVF cycle, this NOFLAMOX-treated population showed a pregnancy rate of 42.3% compared to the 4.7% of the IMMUNOX-positive group of patients. Conclusions: Taken together, the results of this study suggest that NOFLAMOX could represent an interesting option for those patients with unexplained infertility of inflammatory/oxidative origin. Further studies are needed to confirm these results and explore possible strategies to restore fertility in women with immune-mediated sterility.


Subject(s)
Curcuma , Infertility , Pregnancy , Humans , Female , Prospective Studies , Glycodelin , Tumor Necrosis Factor-alpha , Fertilization in Vitro , Dietary Supplements , Biomarkers
2.
Antioxidants (Basel) ; 10(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34943090

ABSTRACT

Natural foods with antioxidant properties, such as curcuma, papain, bromelain and black pepper, have been indicated as a potential natural therapeutic approach against osteoporosis. Zebrafish are an excellent animal model to study the effects of herbal preparations on osteogenesis and bone metabolism, both in physiological and in pathological conditions. Our study was aimed at evaluating whether curcuma-bromelain-papain-pepper herbal preparation (CHP) administered in embryos and adult fish is capable of promoting bone wellness in physiological and osteoporotic conditions. The effect of CHP has been studied in embryonic osteogenesis and glucocorticoid-induced osteoporosis (GIOP) in an adult fish model in which drug treatment induces a bone-loss phenotype in adult scales very similar to that which characterizes the bones of human patients. CHP prevented the onset of the osteoporotic phenotype in the scales of GIOP in adult zebrafish, with the osteoblastic and osteoclastic metabolic activity maintaining unaltered. CHP is also able to attenuate an already established GIOP phenotype, even if the alteration is in an advanced phase, partially restoring the normal balance of the bone markers alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) and stimulating anabolic reparative processes. The results obtained indicated CHP as a potential integrative antioxidant therapy in human bone-loss diseases.

3.
J Pharmacol Sci ; 143(4): 300-306, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32534995

ABSTRACT

Drug and therapies currently used to treat human bone diseases have a lot of severe side effects. Liquiritigenin is a flavonoid extracted from Glycyrrhiza glabra roots which has been reported to have positive effects in vitro on osteoblasts activity and bone mineralization as well as inhibitory effect on osteoclasts differentiation and activity in vitro. The present study was aimed to evaluate the in vivo effects of liquiritigenin on bone structure and metabolism in physiological and pathological conditions using Danio rerio as experimental animal model. Treatments with liquiritigenin were performed on embryos to evaluate the osteogenesis during skeletal development. Other treatments were performed on adult fish affected by glucocorticoid-induced osteoporosis to assay the therapeutic potential of liquiritigenin in the reversion of bone-loss phenotype in scale model. Liquiritigenin treatment of zebrafish embryo significantly enhances the osteogenesis during development in a dose-dependent manner. In addition, liquiritigenin inhibits the formation of the osteoporotic phenotype in adult zebrafish model of glucocorticoid-induced osteoporosis preventing osteoclast activation in scales. Interestingly, liquiritigenin does not counteract the loss of osteoblastic activity in scales. The liquiritigenin exhibits in vivo anti-osteoporotic activity on adult fish scale model. It can be considered a good candidate to develop new drugs against osteoporosis.


Subject(s)
Flavanones/pharmacology , Flavanones/therapeutic use , Glucocorticoids/adverse effects , Osteoclasts/drug effects , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Animals , Disease Models, Animal , Osteogenesis/drug effects , Stimulation, Chemical , Zebrafish
4.
Nutrients ; 11(5)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075971

ABSTRACT

Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia that induces other pathologies including diabetic retinopathy and bone disease. Adult Danio rerio (zebrafish) represents a powerful model to study both glucose and bone metabolism. Then, the aim of this study was to evaluate the effects of liquiritigenin (LTG) on blood glucose level and diabetes complications in hyperglycemic adult zebrafish. LTG is a flavonoid extracted from Glycyrrhiza glabra roots which possess important antioxidant, anti-inflammatory, and anti-diabetic properties. During four weeks of glucose treatment, LTG significantly prevented the onset of the hyperglycemia in adult zebrafish. Moreover, hyperglycemic fish showed increased advanced glycation end-products (AGEs) and parathormone levels whereas LTG completely prevented both of these metabolic alterations. Large bone-loss areas were found in the scales of glucose-treated fish whereas only small resorption lacunae were detected after glucose/LTG treatment. Biochemical and histological tartrate resistant acid phosphatase (TRAP) assays performed on explanted scales confirmed that LTG prevented the increase of osteoclastic activity in hyperglycemic fish. The osteoblastic alkaline phosphatase (ALP) activity was clearly lost in scales of glucose-treated fish whereas the co-treatment with LTG completely prevented such alteration. Gene expression analysis showed that LTG prevents the alteration in crucial bone regulatory genes. Our study confirmed that LTG is a very promising natural therapeutic approach for blood glucose lowering and to contrast the development of bone complications correlated to chronic hyperglycemia.


Subject(s)
Blood Glucose/metabolism , Bone Resorption/prevention & control , Bone and Bones/drug effects , Flavanones/therapeutic use , Glycyrrhiza/chemistry , Hyperglycemia/prevention & control , Phytotherapy , Alkaline Phosphatase/metabolism , Animals , Bone Resorption/etiology , Diabetes Complications/prevention & control , Diabetes Mellitus/blood , Diabetes Mellitus/pathology , Diabetes Mellitus/prevention & control , Disease Models, Animal , Flavanones/pharmacology , Gene Expression , Glycation End Products, Advanced/blood , Hyperglycemia/blood , Hyperglycemia/complications , Osteoblasts/drug effects , Osteoclasts/drug effects , Parathyroid Hormone/blood , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Roots , Tartrate-Resistant Acid Phosphatase/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL