Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Biochem Pharmacol ; 181: 114149, 2020 11.
Article in English | MEDLINE | ID: mdl-32663453

ABSTRACT

Snake venoms consist of a complex mixture of many bioactive molecules. Among them are disintegrins, which are peptides without enzymatic activity, but with high binding affinity for integrins, transmembrane receptors that function to connect cells with components of the extracellular matrix. Integrin-mediated cell attachment is critical for cell migration and dissemination, as well as for signal transduction pathways involved in cell growth. During tumor development, integrins play key roles by supporting cancer cell proliferation, angiogenesis, and metastasis. The recognition that snake venom disintegrins can block integrin functions has spawned a number of studies to explore their cancer therapeutic potential. While dozens of different disintegrins have been isolated, none of them as yet has undergone clinical evaluation in cancer patients. Among the best-characterized and preclinically most advanced disintegrins is vicrostatin (VCN), a recombinant disintegrin that was rationally designed by fusing 62 N-terminal amino acids derived from the disintegrin contortrostatin with 6 C-terminal amino acids from echistatin, the disintegrins from another snake species. Bacterially produced VCN was shown to target multiple tumor-associated integrins, achieving potent anti-tumor and anti-angiogenic effects in in vitro and in vivo models in the absence of noticeable toxicity. This review will introduce the field of snake venom disintegrins as potential anticancer agents and illustrate the translational development and cancer-therapeutic potential of VCN as an example.


Subject(s)
Antineoplastic Agents/pharmacology , Disintegrins/pharmacology , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Disintegrins/chemistry , Disintegrins/therapeutic use , Drug Evaluation, Preclinical/methods , Humans , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Snake Venoms/chemistry , Snake Venoms/metabolism
2.
Amino Acids ; 51(10-12): 1569-1575, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31621030

ABSTRACT

A novel recombinant disintegrin, vicrostatin (VCN), displays high binding affinity to a broad range of human integrins in substantial competitive biological advantage over other integrin-based antagonists. In this study, we synthesized a new 64Cu-labeled VCN probe and evaluated its imaging properties for prostate cancer in PC-3 tumor-bearing mice. Macrocyclic chelating agent 1,8-diamino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]-eicosine (DiAmSar) was conjugated with PEG unit and followed by coupling with VCN. The precursor was then radiolabeled with positron emitter 64Cu (t1/2 = 12.7 h) in ammonium acetate buffer to provide 64Cu-Sar-PEG-VCN, which was subsequently subjected to in vitro studies, small animal PET, and biodistribution studies. The PC-3 tumor-targeting efficacy of 64Cu-Sar-PEG-VCN was compared to a cyclic RGD peptide-based PET probe (64Cu-Sar-RGD). 64Cu labeling was achieved in 75% decay-corrected yield with radiochemical purity of > 98%. The specific activity of 64Cu-Sar-PEG-VCN was estimated to be 37 MBq/nmol. MicroPET imaging results showed that 64Cu-Sar-PEG-VCN has preferential tumor uptake and good tumor retention in PC-3 tumor xenografts. As compared to 64Cu-Sar-RGD, 64Cu-Sar-PEG-VCN produces higher tumor-to-muscle (T/M) imaging contrast ratios at 2 h (4.66 ± 0.34 vs. 2.88 ± 0.46) and 24 h (4.98 ± 0.80 vs. 3.22 ± 0.30) post-injection (pi) and similar tumor-to-liver ratios at 2 h (0.43 ± 0.09 vs. 0.37 ± 0.04) and 24 h (0.57 ± 0.13 vs. 0.52 ± 0.07) pi. The biodistribution results were consistent with the quantitative analysis of microPET imaging, demonstrating good T/M ratio (2.73 ± 0.36) of 64Cu-Sar-PEG-VCN at 48 h pi in PC-3 tumor xenografts. For both microPET and biodistribution studies at 48 h pi, the PC-3 tumor uptake of 64Cu-Sar-PEG-VCN is lower than that of 64Cu-Sar-RGD. 64Cu-Sar-PEG-VCN has the potential for in vivo imaging of prostate cancer with PET, which may provide a unique non-invasive method to quantitatively localize and characterize prostate cancer.


Subject(s)
Copper Radioisotopes/pharmacokinetics , Disintegrins/pharmacokinetics , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Animals , Copper Radioisotopes/chemistry , Disintegrins/chemistry , Drug Evaluation, Preclinical , Heterocyclic Compounds/chemistry , Humans , Male , Mice , Mice, Nude , Organ Specificity , PC-3 Cells , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Polyethylene Glycols/chemistry , Prostatic Neoplasms/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Sarcosine/analogs & derivatives , Sarcosine/chemistry , Tissue Distribution , Xenograft Model Antitumor Assays
3.
Antivir Ther ; 17(7): 1319-26, 2012.
Article in English | MEDLINE | ID: mdl-22875654

ABSTRACT

BACKGROUND: Herpes simplex virus (HSV) causes significant health problems from periodical skin and corneal lesions to encephalitis. HSV entry provides a unique opportunity for therapeutic intervention. In this study, we evaluated contortrostatin (CN), an Arg-Gly-Asp motif containing disintegrin isolated from snake venom, as a novel therapeutic agent with ability to block HSV entry and related membrane fusion. METHODS: In vitro efficacy of CN against HSV was determined using an HSV type-1 (HSV-1) entry assay based on the measurement of ß-galactosidase reporter activity originating from the genome of a recombinant strain of HSV-1(KOS) gL86. HSV-1 glycoprotein-mediated cell-to-cell fusion was used to study the effect of CN on polykaryocyte formation. Primary as well as transformed cell lines were used for this study. RESULTS: Pre-treatment of Chinese hamster ovary (CHO-K1) cells expressing HSV-1 glycoprotein D receptors and primary cultures of human corneal fibroblasts (CF) with CN resulted in the inhibition of entry, cell-to-cell fusion, and polykaryocyte formation. Interestingly, a more pronounced anti-HSV-1 effect was observed in naturally susceptible CF than CHO-K1 cells. CONCLUSIONS: CN, a novel venom-derived peptide, exhibits the ability to block two key steps, entry and cell-to-cell fusion, in HSV infection. Showing strong promise for development as an anti-HSV agent, it also demonstrates better prophylactic efficacy in primary cells.


Subject(s)
Disintegrins/pharmacology , Herpesvirus 1, Human/drug effects , Snake Venoms/chemistry , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , CHO Cells , Cell Fusion , Cornea/cytology , Cricetinae , Disintegrins/chemistry , Disintegrins/isolation & purification , Drug Evaluation, Preclinical , Fibroblasts/drug effects , Fibroblasts/virology , Giant Cells/chemistry , Giant Cells/drug effects , HeLa Cells , Herpes Simplex/virology , Herpesvirus 1, Human/pathogenicity , Host-Pathogen Interactions , Humans , Primary Cell Culture , Receptors, Cell Surface/chemistry , Transfection , Viral Envelope Proteins/chemistry , Viral Plaque Assay
4.
Toxins (Basel) ; 2(4): 793-808, 2010 04.
Article in English | MEDLINE | ID: mdl-22069611

ABSTRACT

Fibrolase is the fibrinolytic enzyme isolated from Agkistrodon contortrix contortrix (southern copperhead snake) venom. The enzyme was purified by a three-step HPLC procedure and was shown to be homogeneous by standard criteria including reverse phase HPLC, molecular sieve chromatography and SDS-PAGE. The purified enzyme is a zinc metalloproteinase containing one mole of zinc. It is composed of 203 amino acids with a blocked amino-terminus due to cyclization of the terminal Gln residue. Fibrolase shares a significant degree of homology with enzymes of the reprolysin sub-family of metalloproteinases including an active site homology of close to 100%; it is rapidly inhibited by chelating agents such as EDTA, and by alpha2-macroglobulin (α2Μ). The enzyme is a direct-acting thrombolytic agent and does not rely on plasminogen for clot dissolution. Fibrolase rapidly cleaves the A(α)-chain of fibrinogen and the B(ß)-chain at a slower rate; it has no activity on the γ-chain. The enzyme exhibits the same specificity with fibrin, cleaving the α-chain more rapidly than the ß-chain. Fibrolase was shown to have very effective thrombolytic activity in a reoccluding carotid arterial thrombosis model in the canine. A recombinant version of the enzyme was made in yeast by Amgen, Inc. (Thousand Oaks, CA, USA) and called alfimeprase. Alfimeprase is identical to fibrolase except for a two amino acid truncation at the amino-terminus and the insertion of a new amino-terminal amino acid in the truncated protein; these changes lead to a more stable enzyme for prolonged storage. Alfimeprase was taken into clinical trials by Nuvelo, Inc. (San Carlos, CA), which licensed the enzyme from Amgen. Alfimeprase was successful in Phase I and II clinical trials for peripheral arterial occlusion (PAO) and central venous access device (CVAD) occlusion. However, in Phase III trials alfimeprase did not meet the expected end points in either PAO or CVAD occlusion and in a Phaase II stroke trial, and Nuvelo dropped further development in 2008.


Subject(s)
Fibrinolytic Agents/therapeutic use , Metalloendopeptidases/therapeutic use , Animals , Catheterization, Central Venous/adverse effects , Clinical Trials as Topic , Fibrinolytic Agents/pharmacology , Humans , Metalloendopeptidases/pharmacology , Peripheral Arterial Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL