Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34793952

ABSTRACT

The understanding of swimming physiology and knowledge on the metabolic costs of swimming are important for assessing effects of environmental factors on migratory behavior. Swim tunnels are the most common experimental setups for measuring swimming performance and oxygen uptake rates in fishes; however, few can realistically simulate depth and the changes in hydrostatic pressure that many fishes experience, e.g. during diel vertical migrations. Here, we present a new hyperbaric swimming respirometer (HSR) that can simulate depths of up to 80 m. The system consists of three separate, identical swimming tunnels, each with a volume of 205 L, a control board and a storage tank with water treatment. The swimming chamber of each tunnel has a length of 1.40 m and a diameter of 20 cm. The HSR uses the principle of intermittent-flow respirometry and has here been tested with female European eels (Anguilla anguilla). Various pressure, temperature and flow velocity profiles can be programmed, and the effect on metabolic activity and oxygen consumption can be assessed. Thus, the HSR provides opportunities to study the physiology of fish during swimming in a simulated depth range that corresponds to many inland, coastal and shelf waters.


Subject(s)
Anguilla/physiology , Swimming/physiology , Animals , Computer Simulation , Computer Systems , Equipment Design , Female , Hydrostatic Pressure , Hyperbaric Oxygenation/instrumentation , Hyperbaric Oxygenation/statistics & numerical data , Models, Biological , Oxygen Consumption/physiology , Respiratory Physiological Phenomena , Rheology/instrumentation , Rheology/statistics & numerical data , Software , Temperature
2.
Proc Natl Acad Sci U S A ; 116(23): 11339-11344, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31085642

ABSTRACT

During their once-in-a-lifetime transoceanic spawning migration, anguillid eels do not feed, instead rely on energy stores to fuel the demands of locomotion and reproduction while they reorganize their bodies by depleting body reserves and building up gonadal tissue. Here we show how the European eel (Anguilla anguilla) breaks down its skeleton to redistribute phosphorus and calcium from hard to soft tissues during its sexual development. Using multiple analytical and imaging techniques, we characterize the spatial and temporal degradation of the skeletal framework from initial to final gonadal maturation and use elemental mass ratios in bone, muscle, liver, and gonadal tissue to determine the fluxes and fates of selected minerals and metals in the eels' bodies. We find that bone loss is more pronounced in females than in males and eventually may reach a point at which the mechanical stability of the skeleton is challenged. P and Ca are released and translocated from skeletal tissues to muscle and gonads, leaving both elements in constant proportion in remaining bone structures. The depletion of internal stores from hard and soft tissues during maturation-induced body reorganization is accompanied by the recirculation, translocation, and maternal transfer of potentially toxic metals from bone and muscle to the ovaries in gravid females, which may have direct deleterious effects on health and hinder the reproductive success of individuals of this critically endangered species.


Subject(s)
Anguilla/metabolism , Anguilla/physiology , Bone Resorption/metabolism , Bone and Bones/metabolism , Bone and Bones/physiology , Animal Migration/physiology , Animals , Biological Phenomena , Calcium/metabolism , Endangered Species , Female , Gonads/metabolism , Gonads/physiology , Liver/metabolism , Liver/physiology , Male , Muscles/metabolism , Muscles/physiology , Ovary/metabolism , Ovary/physiology , Phosphorus/metabolism , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL