Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Ethnopharmacol ; 324: 117707, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38232858

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The plants of the genus Casimirella ampla (Miers) (C. ampla) are extensively used in folk medicine. For a long time, rural communities have been using extracts from its roots for food and therapeutic purposes. The extract is rich in diterpenoid annonalide (Annona), which has antiophidic, anti-inflammatory and antinociceptive properties. Inflammation is the body's primary defense mechanism against cell damage and invasion by pathogens, which can trigger acute and chronic inflammatory processes. The first line of treatment for this condition consists of the use of non-steroidal anti-inflammatory drugs, but these have numerous associated collateral damages, based on scientific knowledge about diterpenoids from C. ampla, as well as their already reported antinociceptive and anti-inflammatory properties. AIMS OF THE STUDY: Evaluate the effect of Annona in classic models of inflammation and pain. MATERIALS AND METHODS: Animals were pretreated with Annona (0.1, 1.0 and 10 mg/kg), or Tween 80 (2%), or indomethacin (Indo) (10 mg/kg) orally in the paw edema tests induced by carrageenan (Cg), serotonin (5-HT), histamine, bradykinin, 48/80 and, prostaglandin E2 (PGE2), evaluating microscopic lesion scores, migration of leukocytes to the peritoneal cavity, concentration of myeloperoxide (MPO), malonyldialdehyde (MDA) and glutathione (GSH), abdominal contortion test by acetic acid and formalin test. RESULTS: Treatment with Annona compound at a dose of 0.1 mg/kg was more effective in reducing inflammatory, oxidant and nociceptive parameters, as it reduced paw edema induced by carrageenan, through different mediators and migration of inflammatory cells. Furthermore, it worked by reducing the concentration of MPO, MDA, preserving GSH levels and reducing nociception caused by formalin and acetic acid.


Subject(s)
Analgesics , Magnoliopsida , Animals , Carrageenan , Analgesics/adverse effects , Plant Extracts/adverse effects , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Glutathione/metabolism , Magnoliopsida/metabolism , Acetates , Edema/chemically induced , Edema/drug therapy , Edema/metabolism
2.
Water Res ; 206: 117726, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34656820

ABSTRACT

Polyphosphate (polyP) accumulating organisms (PAOs) are the key agent to perform enhanced biological phosphorus removal (EBPR) activity, and intracellular polyP plays a key role in this process. Potential associations between EBPR performance and the polyP structure have been suggested, but are yet to be extensively investigated, mainly due to the lack of established methods for polyP characterization in the EBPR system. In this study, we explored and demonstrated that single-cell Raman spectroscopy (SCRS) can be employed for characterizing intracellular polyPs of PAOs in complex environmental samples such as EBPR systems. The results, for the first time, revealed distinct distribution patterns of polyP length (as Raman peak position) in PAOs in lab-scale EBPR reactors that were dominated with different PAO types, as well as among different full-scale EBPR systems with varying configurations. Furthermore, SCRS revealed distinctive polyP composition/features among PAO phenotypic sub-groups, which are likely associated with phylogenetic and/or phenotypic diversity in EBPR communities, highlighting the possible resolving power of SCRS at the microdiversity level. To validate the observed polyP length variations via SCRS, we also performed and compared bulk polyP length characteristics in EBPR biomass using conventional polyacrylamide gel electrophoresis (PAGE) and solution 31P nuclear magnetic resonance (31P-NMR) methods. The results are consistent with the SCRS findings and confirmed the variations in the polyP lengths among different EBPR systems. Compared to conventional methods, SCRS exhibited advantages as compared to conventional methods, including the ability to characterize in situ the intracellular polyPs at subcellular resolution in a label-free and non-destructive way, and the capability to capture subtle and detailed biochemical fingerprints of cells for phenotypic classification. SCRS also has recognized limitations in comparison with 31P-NMR and PAGE, such as the inability to quantitatively detect the average polyP chain length and its distribution. The results provided initial evidence for the potential of SCRS-enabled polyP characterization as an alternative and complementary microbial community phenotyping method to facilitate the phenotype-function (performance) relationship deduction in EBPR systems.


Subject(s)
Phosphorus , Polyphosphates , Bioreactors , Phenotype , Phylogeny , Sewage
3.
Water Res ; 204: 117621, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34500182

ABSTRACT

In enhanced biological phosphorus removal (EBPR), Tetrasphaera can potentially be an abundant and important polyphosphate accumulating organism (PAO), however ongoing questions remain concerning its storage compounds, phosphorus (P) removal capabilities and metabolic behaviour. This study investigated each of these points in an enriched Tetrasphaera culture (95% biovolume). The enriched Tetrasphaera culture fermented amino acids, while also converting and storing diverse amino acids as aspartic and glutamic acid within cells. Subsequent intracellular consumption of these two amino acids during the aerobic phase supports their importance in the metabolism of Tetrasphaera. Polyhydroxyalkanoate (PHA) cycling was also observed in this study, in contrast to some previous studies on Tetrasphaera. While exhibiting anaerobic phosphorus release and aerobic uptake, the highly enriched Tetrasphaera culture was unable to completely remove phosphorus in sequencing batch reactors (SBR) cycles, with an average removal efficiency of 72.3 ± 7.8%. This is unlike a previous study containing both Tetrasphaera (70%) and Accumulibacter (22%), which regularly performed complete phosphorus removal under otherwise similar operational conditions, at efficiencies of > 99%. Notably, the phylodiversity of organisms belonging to Tetrasphaera was substantially different in the present work, consisting mainly of organisms within Clade 2, likely impacting PHA cycling. These results suggest that the contribution of Tetrasphaera towards P removal is highly dependent on the composition of its Clades within this microbial group and an observed higher abundance of Tetrasphaera in WWTPs does not necessarily imply overall higher P removal. This study improves our understanding of the role of Tetrasphaera within EBPR systems and key factors impacting its metabolism.


Subject(s)
Actinomycetales , Betaproteobacteria , Bioreactors , Phosphorus , Polyphosphates
4.
Water Res ; 137: 262-272, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29550729

ABSTRACT

Denitrifying enhanced biological phosphorus removal (EBPR) systems can be an efficient means of removing phosphate (P) and nitrate (NO3-) with low carbon source and oxygen requirements. Tetrasphaera is one of the most abundant polyphosphate accumulating organisms present in EBPR systems, but their capacity to achieve denitrifying EBPR has not previously been determined. An enriched Tetrasphaera culture, comprising over 80% of the bacterial biovolume was obtained in this work. Despite the denitrification capacity of Tetrasphaera, this culture achieved only low levels of anoxic P-uptake. Batch tests with different combinations of NO3-, nitrite (NO2-) and nitrous oxide (N2O) revealed lower N2O accumulation by Tetrasphaera as compared to Accumulibacter and Competibacter when multiple electron acceptors were added. Electron competition was observed during the addition of multiple nitrogen electron acceptors species, where P uptake appeared to be slightly favoured over glycogen production in these situations. This study increases our understanding of the role of Tetrasphaera-related organisms in denitrifying EBPR systems.


Subject(s)
Actinobacteria/metabolism , Nitrous Oxide/metabolism , Phosphorus/metabolism , Water Pollutants, Chemical/metabolism , Denitrification , Glycogen/metabolism , Nitrites/metabolism , Nitrogen/metabolism , Polyphosphates/metabolism , Waste Disposal, Fluid
5.
Biosci. j. (Online) ; 33(6): 1642-1652, nov./dec. 2017. graf
Article in English | LILACS | ID: biblio-966528

ABSTRACT

The aim of the present study was to investigate the effects of different doses of oral creatine supplementation on tibial muscle resistance and fatigue in Wistar rats. The treatment protocols included swimming exercises, supplementation alone (different doses), and supplementation (different doses) + swimming exercises. Analysis of the effect of creatine supplementation on skeletal muscle fatigue was performed using the intensity of muscle contraction to electrical stimulation to evaluate the intensity of muscle contraction, decay time of muscle tetanic contraction to 50% of maximum tension (fatigue), and the area under the curve for the intensity x time ratio, besides AST, LDH, and urea plasmatic analysis. Our results suggest that creatine supplementation seems to be able to produce ergogenic effects on contractile metabolism in the group treated with the dose of 280 mg/kg + swim exercise. This creatine dose presented a statistically significant increase in decay time of muscle tetanic contraction (C280+swim (119±13.1), C500+swim (110±23.6) and C1000+swim (87±15.1)), area under the curve between tetanic contractions, and plasma LDH decrease, when compared to the other doses. These data clearly demonstrate that high doses do not lead to any additional ergogenic effects. We conclude that the dose of 280 mg/kg+swim exercise obtained the best ergogenic effects on tibial muscle resistance and fatigue in Wistar rats.


O objetivo do presente estudo foi investigar os efeitos de diferentes doses de suplementação oral de creatina sobre a resistência e fadiga do músculo tibial em ratos wistar. Os protocolos de tratamento incluíram exercícios de natação, suplementação isolada (doses diferentes) e suplementação (doses diferentes) + exercícios de natação. A análise do efeito da suplementação de creatina na fadiga do músculo esquelético foi realizada utilizando-se a intensidade da contração muscular à uma estimulação elétrica, aferindo a intensidade da contração muscular, tempo de decaimento da contração tetânica do músculo a 50% da tensão máxima (fadiga) e a área sob a curva para a razão de intensidade x tempo, além de análises plasmática de AST, LDH e ureia. Nossos resultados sugerem que a suplementação de creatina parece ser capaz de produzir efeitos ergogênicos no metabolismo contrátil no grupo tratado, com a dose de 280 mg/kg+natação. Esta dose de creatina teve um aumento estatisticamente significativo no tempo de decaimento da contracção tetânica muscular (C280+natação (119±13.1), C500+natação (110±23.6) e C1000+natação (87±15.1)), área sob a curva entre as contrações tetânicas e também diminuição da LDH plasmática quando comparada com as outras doses. Estes dados demonstraram claramente que doses elevadas não conduzem a qualquer aumento adicional de efeitos ergogênicos. Concluimos que a dose de 280 mg / kg + exercício de natação obteve os melhores efeitos ergogênicos sobre a resistência e fadiga do músculo tibial em ratos wistar.


Subject(s)
Food , Rats, Wistar , Muscle Fatigue , Dietary Supplements , Creatine
6.
Photomed Laser Surg ; 35(10): 567-575, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28677985

ABSTRACT

BACKGROUND AND OBJECTIVE: There is a lack of knowledge about the influence tissue temperature may have on laser light penetration and tendon structure. The purpose of this study was to investigate whether penetration of laser energy in human Achilles tendons differed before and after ice pack application. MATERIALS AND METHODS: The Achilles tendons (n = 54) from 27 healthy young adults were irradiated with two class 3B lasers (810 nm 200 mW continuous mode laser and a 904 nm 60 mW superpulsed mode laser). The optical energy penetrating the Achilles area was measured before and after 20 min of ice application. Measurements were obtained after 30, 60, and 120 sec irradiation with the 904 nm laser and after 30 and 60 sec irradiation with the 810 nm laser. Achilles tendon thickness was measured with ultrasonography. RESULTS: Optical energy penetration increased significantly (p < 0.01) after ice application for both lasers and at all time points from 0.34% to 0.39% of energy before ice application to 0.43-0.52% of energy after ice application for the 904 nm laser and from 0.24% to 0.25% of energy before ice application to 0.30-0.31% of energy after ice application for the 810 nm laser. The energy loss per centimeter of irradiated tissue was significantly higher (p < 0.05) at all time points after ice application. Ultrasonography imaging of skin-to-skin and transversal tendon thickness was significantly reduced after ice application at p = 0.05 and p = 0.03, respectively. Achilles tendon thickness in the longitudinal plane remained unchanged (p = 0.49). CONCLUSIONS: The penetration of laser light increased significantly through healthy Achilles tendons subjected to 20 min of cooling. These findings occurred in the presence of a significant reduction in skin temperature and Achilles tendon thickness.


Subject(s)
Achilles Tendon/radiation effects , Cryotherapy/methods , Lasers, Semiconductor/therapeutic use , Low-Level Light Therapy/methods , Achilles Tendon/diagnostic imaging , Female , Healthy Volunteers , Humans , Male , Radiotherapy Dosage , Reference Values , Ultrasonography, Doppler , Young Adult
7.
Water Res ; 122: 159-171, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28599161

ABSTRACT

Tetrasphaera and Candidatus Accumulibacter are two abundant polyphosphate accumulating organisms in full-scale enhanced biological phosphorus removal (EBPR) systems. However, little is known about the metabolic behaviour and ecological niche that each organism exhibits in mixed communities. In this study, an enriched culture of Tetrasphaera and Ca. Accumulibacter was obtained using casein hydrolysate as sole carbon source. This culture was able to achieve a high phosphorus removal efficiency (>99%), storing polyphosphate while consuming amino acids anaerobically. Microautoradiography and fluorescence in situ hybridisation confirmed that more than 90% Tetrasphaera cells were responsible for amino acid consumption while Ca. Accumulibacter likely survived on fermentation products. Tetrasphaera performed the majority of the P removal (approximately 80%) in this culture, and batch tests showed that the metabolism of some carbon sources could actually lead to anaerobic orthophosphate (Pi) uptake (9.0 ± 2.1 mg-P/L) through energy generated by fermentation of glucose and amino acids. This anaerobic Pi uptake may lead to lower net Pi release to C uptake ratios and reduce the Pi needed to be removed aerobically in WWTPs. Intracellular metabolites such as amino acids, sugars, volatile fatty acids and small amines were observed as potential storage products, which may serve as energy sources in the aerobic phase. Evidence of the urea cycle was found, which could be involved in reducing the intracellular nitrogen content. This study improves our understanding of how phosphorus is removed in EBPR systems and can enable novel process optimisation strategies.


Subject(s)
Actinomycetales , Bioreactors , Phosphorus/metabolism , Ecology , Polyphosphates
SELECTION OF CITATIONS
SEARCH DETAIL