Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 6661, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509188

ABSTRACT

Aquatic plants are a rich source of health-beneficial substances. One of such organisms is the submerged macrophyte Ceratophyllum demersum, which has not been sufficiently studied in this aspect so far. In this work, we have studied environmental conditions prevailing in a subsidence mining reservoir in Eastern Poland and shown that C. demersum can be harvested for further analysis even from artificial anthropogenic reservoirs. The phytochemical analysis of C. demersum ethanolic extract using LC-MS revealed high content of phenolic compounds (18.50 mg/g) (mainly flavonoids, 16.09 mg/g), including those that have not yet been identified in this plant, namely isorhamnetin, sakuranetin, taxifolin, and eriodictyol. Such rich flavonoid content is most likely responsible for the anticancer activity of the C. demersum extract, which was targeted especially at neoplastic cells of gastrointestinal tract origin. The flow cytometry analysis of treated cells showed an increased percentage of late apoptotic and necrotic cells. The fish embryo toxicity (FET) test showed safety of the extract towards Danio rerio fish up to the concentration of 225 µg/ml. This study has shown that the submerged macrophyte Ceratophyllum demersum can be taken into consideration as a rich source of a set of anticancer agents with chemopreventive potential.


Subject(s)
Antineoplastic Agents , Magnoliopsida , Poland , Antineoplastic Agents/pharmacology , Plant Extracts/pharmacology
2.
Molecules ; 28(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770861

ABSTRACT

A new type of silver nanoparticles (AgNPs) was prepared and comprehensively studied. Scanning electron microscopy (SEM) and dynamic light scattering (DLS) analyses indicated that 24 nm AgNPs with narrow size distribution were obtained while Z-potential confirms their good stability. The composites of the obtained AgNPs with nontoxic-nature-inspired hydrogel were formed upon cooling of the aqueous solution AgNPs and C12Ala. The thermal gravimetric analysis (TGA) and the differential scanning calorimetry (DSC) do not show significant shifts in the characteristic temperature peaks for pure and silver-enriched gels, which indicates that AgNPs do not strongly interact with C12Ala fibers, which was also confirmed by SEM. Both AgNPs alone and in the assembly with the gelator C12Ala were almost biologically passive against bacteria, fungus, cancer, and nontumor human cells, as well as zebra-fish embryos. These studies proved that the new inactive AgNPs-doped hydrogels have potential for the application in therapy as drug delivery media.


Subject(s)
Hydrogels , Metal Nanoparticles , Animals , Humans , Hydrogels/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Bacteria , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry
3.
Food Chem ; 409: 135264, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36571899

ABSTRACT

A novel bioactive polysaccharopeptide (C1) and polysaccharide (C2) with an average molecular weight of 180 kDa and 70 kDa were isolated from R. rugosa pseudofruit. The composition of the macromolecules was established using 1H NMR, FT-IR, GC-MS, SDS-PAGE coupled with enzymatic cleavage, and proteomic analyses (LC-MS). C1 was found to contain 60.56 ± 1.82 % of sugars and 21.17 ± 0.47 % of uronic acids. Its main neutral monosaccharides were arabinose, rhamnose, galactose, glucose, fucose, and mannose. C1 was found to be a polysaccharopeptide containing pectinesterase-like protein. C2 was composed of 32.85 ± 0.97 % of sugars and 48.77 ± 1.15 % of uronic acids. Its main neutral monosaccharides were galactose, glucose, rhamnose, arabinose, and mannose. A promising nutraceutical value of the polysaccharides was revealed. Assays showed strong α-glucosidase inhibitory activity of both macromolecules and considerable antiradical potential and moderate lipoxygenase inhibitory activity of the crude polysaccharide. Moreover, antiproliferative activity of C2 was observed.


Subject(s)
Galactose , Rosa , Rhamnose , Rosa/chemistry , Mannose , Arabinose , Spectroscopy, Fourier Transform Infrared , Proteomics , Monosaccharides/chemistry , Glucose , Polysaccharides/chemistry , Dietary Supplements , Uronic Acids/chemistry , Peptides/pharmacology
4.
Molecules ; 24(7)2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30959857

ABSTRACT

The huge health-beneficial potential of polysaccharides encourages the search for novel sources and applications of these compounds. One poorly explored source of polysaccharides is the rose. The content and biological activity of polysaccharides in rose organs is an almost completely unaddressed topic, therefore, polysaccharide-rich extracts (crude polysaccharides, CPLs) from petals, leaves, hips, and achenes of Rosa rugosa Thunb. were studied for their composition and the influence on various cellular processes involved in the development of cancer and other civilization diseases. The study revealed the presence of water-soluble and -insoluble polysaccharides (including ß-glucans) and protein-polysaccharide conjugates in rose organs. Rose hips were found to be the most abundant source of polysaccharides. Different polysaccharide-rich extracts showed the ability to inhibit pro-inflammatory enzymes (COX-1, COX-2, hyaluronidase), a radical scavenging effect (against DPPH• and ABTS•+), and antiproliferative activity (in the A549 lung and SW480 colon cancer cell lines) in in vitro assays. Therefore, rose crude polysaccharides are very promising and can potentially be used as natural chemopreventive agents.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Rosa/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Biomarkers
5.
Molecules ; 24(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30609757

ABSTRACT

Small molecules containing quinone and/or oxime moieties have been found as promising anti-fungal agents. One of them is 4-AN, a recently reported potent anti-Candida compound, which inhibits the formation of hyphae, decreases the level of cellular phosphoproteome, and finally shows no toxicity towards human erythrocytes and zebrafish embryos. Here, further research on 4-AN is presented. The results revealed that the compound: (i) Kills Candida clinical isolates, including these with developed antibiotic resistance, (ii) affects mature biofilm, and (iii) moderately disrupts membrane permeability. Atomic force microscopy studies revealed a slight influence of 4-AN on the cell surface architecture. 4-AN was also shown to inhibit multiple various protein kinases, a characteristic shared by most of the ATP-competitive inhibitors. The presented compound can be used in novel strategies in the fight against candidiasis, and reversible protein phosphorylation should be taken into consideration as a target in designing these strategies.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Oximes/therapeutic use , Protein Kinase Inhibitors/pharmacology , Quinones/therapeutic use , Biofilms/drug effects , Biological Transport , Cell Membrane , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Phosphorylation , Protein Binding , Surface Properties
6.
J Med Microbiol ; 67(4): 598-609, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29461185

ABSTRACT

PURPOSE: In this study, we applied various assays to find new activities of 1,4-naphthoquinone derivatives for potential anti-Candida albicans applications. METHODOLOGY: These assays determined (a) the antimicrobial effect on growth/cell multiplication in fungal cultures, (b) the effect on formation of hyphae and biofilm, (c) the influence on cell membrane integrity, (d) the effect on cell morphology using atomic force microscopy, and (e) toxicity against zebrafish embryos. We have demonstrated the activity of these compounds against different Candida species and clinical isolates of C. albicans. KEY FINDINGS: 1,4-Naphthoquinones significantly affected fungal strains at 8-250 mg l-1 of MIC. Interestingly, at concentrations below MICs, the chemicals showed effectiveness in inhibition of hyphal formation and cell aggregation in Candida. Of note, atomic force microscopy (AFM) analysis revealed an influence of the compounds on cell morphological properties. However, at low concentrations (0.8-31.2 mg l-1), it did not exert any evident toxic effects on zebrafish embryos. CONCLUSIONS: Our research has evidenced the effectiveness of 1,4-naphthoquinones as potential anti-Candida agents.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Hyphae/growth & development , Naphthoquinones/pharmacology , Animals , Antifungal Agents/toxicity , Candida albicans/growth & development , Candidiasis/microbiology , Drug Evaluation, Preclinical , Humans , Hyphae/drug effects , Microbial Sensitivity Tests , Naphthoquinones/toxicity , Zebrafish/embryology
7.
Pol J Microbiol ; 65(3): 359-364, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-29334067

ABSTRACT

A broad series of 4,5,6,7-tetrahalogenated benzimidazoles and 4-(1H-benzimidazol-2-yl)-benzene-1,3-diol derivatives was tested against selected bacteria and fungi. For this study three plant pathogens Colletotrichum sp., Fusarium sp., and Sclerotinia sp., as well as Staphylococcus sp., Enterococcus sp., Escherichia sp., Enterobacter sp., Klebsiella spp. , and Candida spp. as human pathogens were used. MIC values and/or area of growth reduction method were applied in order to compare the activity of the synthesized compounds. From the presented set of 22 compounds, only 8, 16, 18 and 19 showed moderate to good inhibition against bacterial strains. Against Candida strains only compound 19 with three hydroxyl substituted benzene moiety presented high inhibition at nystatin level or lower.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Benzimidazoles/pharmacology , Bacteria/drug effects , Benzimidazoles/chemistry , Drug Evaluation, Preclinical , Fungi/drug effects , Microbial Sensitivity Tests , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL