Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Virol ; 97(2): e0198722, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36728416

ABSTRACT

Hepatitis A virus (HAV) infection often causes acute hepatitis, which results in a case fatality rate of 0.2% and fulminant hepatitis in 0.5% of cases. However, no specific potent anti-HAV drug is available on the market to date. In the present study, we focused on inhibition of HAV internal ribosomal entry site (IRES)-mediated translation and investigated novel therapeutic drugs through drug repurposing by screening for inhibitors of HAV IRES-mediated translation and cell viability using a reporter assay and cell viability assay, respectively. The initial screening of 1,158 drugs resulted in 77 candidate drugs. Among them, nicotinamide significantly inhibited HAV HA11-1299 genotype IIIA replication in Huh7 cells. This promising drug also inhibited HAV HM175 genotype IB subgenomic replicon and HAV HA11-1299 genotype IIIA replication in a dose-dependent manner. In the present study, we found that nicotinamide inhibited the activation of activator protein 1 (AP-1) and that knockdown of c-Jun, which is one of the components of AP-1, inhibited HAV HM175 genotype IB IRES-mediated translation and HAV HA11-1299 genotype IIIA and HAV HM175 genotype IB replication. Taken together, the results showed that nicotinamide inhibited c-Jun, resulting in the suppression of HAV IRES-mediated translation and HAV replication, and therefore, it could be useful for the treatment of HAV infection. IMPORTANCE Drug screening methods targeting HAV IRES-mediated translation with reporter assays are attractive and useful for drug repurposing. Nicotinamide (vitamin B3, niacin) has been shown to effectively inhibit HAV replication. Transcription complex activator protein 1 (AP-1) plays an important role in the transcriptional regulation of cellular immunity or viral replication. The results of this study provide evidence that AP-1 is involved in HAV replication and plays a role in the HAV life cycle. In addition, nicotinamide was shown to suppress HAV replication partly by inhibiting AP-1 activity and HAV IRES-mediated translation. Nicotinamide may be useful for the control of acute HAV infection by inhibiting cellular AP-1 activity during HAV infection processes.


Subject(s)
Hepatitis A virus , Niacinamide , Proto-Oncogene Proteins c-jun , Humans , Drug Evaluation, Preclinical , Hepatitis A , Hepatitis A virus/drug effects , Hepatitis A virus/physiology , Niacinamide/pharmacology , Protein Biosynthesis , Transcription Factor AP-1/genetics , Virus Replication/drug effects , Proto-Oncogene Proteins c-jun/genetics
2.
Viruses ; 12(5)2020 05 12.
Article in English | MEDLINE | ID: mdl-32408660

ABSTRACT

Hepatitis A virus (HAV) infection is one of the major causes of acute hepatitis, and this infection occasionally causes acute liver failure. HAV infection is associated with HAV-contaminated food and water as well as sexual transmission among men who have sex with men. Although an HAV vaccine has been developed, outbreaks of hepatitis A and life-threatening severe HAV infections are still observed worldwide. Therefore, an improved HAV vaccine and anti-HAV drugs for severe hepatitis A should be developed. Here, we reviewed cell culture systems for HAV infection, and other issues. This review may help with improving the HAV vaccine and developing anti-HAV drugs.


Subject(s)
Antiviral Agents/pharmacology , Cell Culture Techniques/methods , Drug Evaluation, Preclinical/methods , Hepatitis A virus/physiology , Hepatitis A/drug therapy , Animals , Hepatitis A/prevention & control , Hepatitis A/virology , Hepatitis A virus/drug effects , Hepatitis A virus/genetics , Hepatitis A virus/immunology , Humans , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL