Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Bioengineering (Basel) ; 10(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37106628

ABSTRACT

Anaerobic bioremediation is a relevant process in the management of sites contaminated by petroleum hydrocarbons. Recently, interspecies electron transfer processes mediated by conductive minerals or particles have been proposed as mechanisms through which microbial species within a community share reducing equivalents to drive the syntrophic degradation of organic substrates, including hydrocarbons. Here, a microcosm study was set up to investigate the effect of different electrically conductive materials (ECMs) in enhancing the anaerobic biodegradation of hydrocarbons in historically contaminated soil. The results of a comprehensive suite of chemical and microbiological analyses evidenced that supplementing the soil with (5% w/w) magnetite nanoparticles or biochar particles is an effective strategy to accelerate the removal of selected hydrocarbons. In particular, in microcosms supplemented with ECMs, the removal of total petroleum hydrocarbons was enhanced by up to 50% relative to unamended controls. However, chemical analyses suggested that only a partial bioconversion of contaminants occurred and that longer treatment times would have probably been required to drive the biodegradation process to completion. On the other hand, biomolecular analyses confirmed the presence of several microorganisms and functional genes likely involved in hydrocarbon degradation. Furthermore, the selective enrichment of known electroactive bacteria (i.e., Geobacter and Geothrix) in microcosms amended with ECMs, clearly pointed to a possible role of DIET (Diet Interspecies Electron Transfer) processes in the observed removal of contaminants.

2.
Sci Total Environ ; 845: 157325, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35839884

ABSTRACT

Electrobioremediation technologies hold considerable potential for the treatment of soils contaminated by petroleum hydrocarbons (PH), since they allow stimulating biodegradation processes with no need for subsurface chemicals injection and with little to no energy consumption. Here, a microbial electrochemical snorkel (MES) was applied for the treatment of a soil contaminated by hydrocarbons. The MES consists of direct coupling of a microbial anode with a cathode, being a single conductive, non-polarized material positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated soil) and the oxic zone (the overlying oxygenated water). Soil was also supplemented with electrically conductive particles of biochar as a strategy to construct a conductive network with microbes in the soil matrix, thus extending the radius of influence of the snorkel. The results of a comprehensive suite of chemical, microbiological and ecotoxicological analyses evidenced that biochar addition, rather than the presence of a snorkel, was the determining factor in accelerating PH removal from contaminated soils, possibly accelerating syntrophic and/or cooperative metabolisms involved in the degradation of PH. The enhancement of biodegradation was mirrored by an increased abundance of anaerobic and aerobic microorganisms known to be involved in the degradation of PH and related functional genes. Plant ecotoxicity assays confirmed a reduction of soils toxicity in treatments receiving electrically conductive biochar.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Hydrocarbons/analysis , Petroleum/analysis , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
3.
Water Res ; 127: 11-21, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29020640

ABSTRACT

Marine sediments represent an important sink for a number of anthropogenic organic contaminants, including petroleum hydrocarbons following an accidental oil spill. Degradation of these compounds largely depends on the activity of sedimentary microbial communities linked to biogeochemical cycles, in which abundant elements such as iron and sulfur are shuttled between their oxidized and reduced forms. Here we show that introduction of a small electrically conductive graphite rod ("the electrochemical snorkel") into an oil-contaminated River Tyne (UK) sediment, so as to create an electrochemical connection between the anoxic contaminated sediment and the oxygenated overlying water, has a large impact on the rate of metabolic reactions taking place in the bulk sediment. The electrochemical snorkel accelerated sulfate reduction processes driven by organic contaminant oxidation and suppressed competitive methane-producing reactions. The application of a comprehensive suite of chemical, spectroscopic, biomolecular and thermodynamic analyses suggested that the snorkel served as a scavenger of toxic sulfide via a redox interaction with the iron cycle. Taken as a whole, the results of this work highlight a new strategy for controlling biological processes, such as bioremediation, through the manipulation of the electron flows in contaminated sediments.


Subject(s)
Biodegradation, Environmental , Geologic Sediments/chemistry , Petroleum Pollution , Petroleum/metabolism , Rivers/chemistry , Geologic Sediments/microbiology , Hydrocarbons , Oxidation-Reduction , Rivers/microbiology , United Kingdom
4.
Mar Pollut Bull ; 110(1): 378-382, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27315756

ABSTRACT

This study aimed to develop a new assay based on the whole cell hybridization in order to monitor alkane hydroxylase genes (alkB system) of the marine bacterium Alcanivorax borkumensis SK2(T) commonly reported as the predominant microorganism responsible for the biodegradation of n-alkanes which are the major fraction of petroleum hydrocarbons. The assay based on the whole cell hybridization targeting alkB2 gene was successfully developed and calibrated on a pure culture of Alcanivorax borkumensis SK2(T) with a detection efficiency up to 80%. The approach was further successfully validated on hydrocarbon-contaminated seawater and provided cells abundance (6.74E+04alkB2-carryingcellsmL(-1)) higher of about one order of magnitude than those obtained by qPCR (4.96E+03alkB2genecopiesmL(-1)). This study highlights the validity of the assay for the detection at single cell level of key-functional genes involved in the biodegradation of n-alkanes.


Subject(s)
Alcanivoraceae/genetics , Alcanivoraceae/metabolism , Cytochrome P-450 CYP4A/genetics , Hydrocarbons/metabolism , Seawater/microbiology , Alkanes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Cytochrome P-450 CYP4A/metabolism , In Situ Hybridization, Fluorescence , Italy , Petroleum/metabolism , Reproducibility of Results , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL