Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38442241

ABSTRACT

This study evaluated the effect of feeding ergot contaminated grain continuously or intermittently through backgrounding (BG) and finishing (FN) in a mash or pelleted supplement on the growth performance, health and welfare parameters, and carcass characteristics of feedlot beef steers. Sixty black Angus steers (300 ±â€…29.4 kg BW) were used in a complete randomized 238-d study. Steers were stratified by weight and randomly assigned to four different diets (15 steers/treatment) and individually housed. Treatments included: (1) control [CON; no added ergot alkaloids (EA)], (2) continuous ergot mash (CEM; fed continuously at 2 mg total EA/kg of DM), (3) intermittent ergot mash (IEM; fed at 2 mg total EA/kg of DM, during the first week of each 21-d period and CON for the remaining 2 wk, this feeding pattern was repeated in each period), and (4) intermittent ergot pellet (IEP; fed at 2 mg of total EA/kg of DM as a pellet during the first week of each 21-d period and CON for the remaining 2 wk as described for IEM). Steers were fed barley based BG diets containing 40% concentrate:60% silage (DM basis) for 84 d (four 21-d periods), transitioned over 28 d (no ergot fed) to an FN diet (90% concentrate:10% silage DM basis) and fed for 126 d (six 21-d periods) before slaughter. In the BG phase, steer DMI (P < 0.01, 7.45 vs. 8.05 kg/d) and ADG (P < 0.01) were reduced for all EA diets compared to CON. The CEM fed steers had lower ADG (P < 0.01, 0.735 vs. 0.980 kg) and shrunk final BW (P < 0.01, 350 vs. 366 kg) than CON. CEM had lower gain:feed (P < 0.07, 0.130 vs. 0.142) than CON. In the FN phase, steer DMI (P < 0.01, 9.95 vs. 11.05 kg/d) and ADG (P = 0.04) were also decreased for all EA fed steers compared to CON. Total shrunk BW gain (P = 0.03, 202.5 vs. 225.2 kg), final BW (P = 0.03, 617.9 vs. 662.2 kg), and carcass weight (P = 0.06) decreased for all EA fed steers compared to CON. The percentage of AAA carcasses decreased for all EA fed steers (P < 0.01, 46.7 vs. 93.3%) compared to CON. EA fed steers had increased rectal temperatures (P < 0.01, 39.8 vs. 39.4 °C) compared to CON. Pelleting ergot contaminated grain did not reduce the impact of ergot alkaloids on any of the measured parameters during BG or FN. Continuously or intermittently feeding ergot contaminated diets (2 mg total EA/kg of DM) significantly reduced intake, growth performance, and carcass weight, with minimal impact on blood parameters in feedlot steers. Pelleting was not an effective method of reducing ergot toxicity.


Produced by the fungus Claviceps purpurea, ergot alkaloids (EA) are toxic to beef cattle when consumed and can lead to reduction in feed intake and growth performance, vasoconstriction of the blood vessels, hyperthermia, damage to extremities (ears, tails, and hooves) and in severe cases, death. Grain is often cleaned to meet quality standards, and the resulting screenings are often utilized for feeding livestock and can have high concentrations of EA. The application of heat during pelleting of EA contaminated grain has been suggested to reduce its toxicity. Backgrounding and finishing beef cattle feeding experiments were conducted to assess the effect of continuously or intermittently feeding EA contaminated grain (2 mg/kg of diet DM) either as a pellet or as mash on growth performance, health, and animal welfare. Feeding EA grain continuously or intermittently either as a mash or pellet drastically reduced growth performance of steers, with no difference between treatments.


Subject(s)
Animal Feed , Ergot Alkaloids , Cattle , Animals , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Silage/analysis , Edible Grain
2.
J Anim Sci ; 97(7): 3103-3119, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31095685

ABSTRACT

A 2-yr study was conducted to evaluate the effects of level and source of fat in the diet of gestating beef cows on their prepartum performance and birth weight of progeny. Each year, 75 multiparous (≥3 calving) pregnant Angus cows were stratified by BW (663 ± 21.5 kg) and BCS (2.6 ± 0.12; 1 to 5 scale) and randomly assigned to 1 of 15 outdoor pens. Subsequently, each pen was randomly assigned to 1 of 3 (n = 5) treatments: a low-fat diet (LF; 1.4 ± 0.12% EE) consisting of grass-legume hay, barley straw, and barley grain, or 1 of 2 high-fat diets (HF; 3.3 ± 0.20% EE) that included either a canola seed (CAN) or a flaxseed (FLX) based pelleted feed. Diets were formulated to meet the requirements of pregnant beef cows during the last 2 trimesters of gestation (0.183 ± 4.8 d), adjusted for changes in environmental conditions, and offered such that each pen on average received similar daily amounts of DE (31.2 ± 2.8 Mcal/cow), CP (1.36 ± 0.13 kg/cow), and DM (12.9 ± 1.0 kg/cow). Data were analyzed as a randomized complete block design with contrasts to separate the effects of level (LF vs. HF) and source (CAN vs. FLX) of fat. After 160 d on trial, conceptus corrected-BW (CC-BW) of LF cows (708 kg) and the proportion of overconditioned cows (13.2%) were greater (P ≤ 0.04) than those of HF, with no difference (P ≥ 0.84) between CAN and FLX for CC-BW (697 kg) and proportion of overconditioned cows (3.6% vs. 2.9%). Feeding FLX diet during gestation resulted in cows with a greater (P ≤ 0.01) concentration of conjugated linolenic acid (0.12% vs. 0.05%) and n-3 (0.58% vs. 0.37%) fatty acids, and a tendency (P = 0.09) for conjugated linoleic acid concentration (1.05% vs. 0.88%) to be greater in subcutaneous adipose tissue (SCAT) when compared with cows fed the CAN diet. By the end of gestation, serum NEFA concentration of LF cows (592 µEq/L) was lower (P < 0.01) than that of HF cows, and FLX cows had greater (P < 0.01) serum NEFA concentration than CAN cows (636 vs. 961 µEq/L). Cows receiving the LF diet during gestation gave birth to lighter (P < 0.01) calves compared with those receiving the HF diets (40.2 vs. 42.9 kg), with no difference (P = 0.24) between calves born to CAN (42.4 kg) and FLX (43.3 kg) cows. In conclusion, these results suggest a partitioning of the ME in pregnant beef cows that is dependent on the type of dietary energy, resulting in heavier calves at birth for cows fed high-fat diets. Also, the type of fatty acid in the diet of gestating beef cows affected the fatty acid profile in SCAT and serum NEFA concentration.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Dietary Supplements/analysis , Energy Metabolism , Fatty Acids/metabolism , Animals , Birth Weight , Diet/veterinary , Eating , Fabaceae , Female , Flax , Parturition , Poaceae , Pregnancy , Random Allocation , Seeds , Weaning , alpha-Linolenic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL