Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Planta Med ; 84(4): 260-266, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29262425

ABSTRACT

Cannabinoids are a group of terpenophenolic compounds in the medicinal plant Cannabis sativa (Cannabaceae family). Cannabigerolic acid, Δ9-tetrahydrocannabinolic acid A, cannabidiolic acid, Δ9-tetrahydrocannabinol, cannabigerol, cannabidiol, cannabichromene, and tetrahydrocannabivarin are major metabolites in the classification of different strains of C. sativa. Degradation or artifact cannabinoids cannabinol, cannabicyclol, and Δ8-tetrahydrocannabinol are formed under the influence of heat and light during processing and storage of the plant sample. An ultrahigh-performance liquid chromatographic method coupled with photodiode array and single quadruple mass spectrometry detectors was developed and validated for quantitative determination of 11 cannabinoids in different C. sativa samples. Compounds 1:  - 11: were baseline separated with an acetonitrile (with 0.05% formic acid) and water (with 0.05% formic acid) gradient at a flow rate of 0.25 mL/min on a Waters Cortec UPLC C18 column (100 mm × 2.1 mm I. D., 1.6 µm). The limits of detection and limits of quantitation of the 11 cannabinoids were below 0.2 and 0.5 µg/mL, respectively. The relative standard deviation for the precision test was below 2.4%. A mixture of acetonitrile and methanol (80 : 20, v/v) was proven to be the best solvent system for the sample preparation. The recovery of all analytes was in the range of 97 - 105%. A total of 32 Cannabis samples including hashish, leaves, and flower buds were analyzed.


Subject(s)
Cannabidiol/analysis , Cannabinoids/analysis , Chromatography, High Pressure Liquid/methods , Dronabinol/analysis , Gas Chromatography-Mass Spectrometry/methods
2.
J Forensic Sci ; 62(3): 602-611, 2017 May.
Article in English | MEDLINE | ID: mdl-27957741

ABSTRACT

Ultra-high-performance supercritical fluid chromatography (UHPSFC) is an efficient analytical technique and has not been fully employed for the analysis of cannabis. Here, a novel method was developed for the analysis of 30 cannabis plant extracts and preparations using UHPSFC/PDA-MS. Nine of the most abundant cannabinoids, viz. CBD, ∆8 -THC, THCV, ∆9 -THC, CBN, CBG, THCA-A, CBDA, and CBGA, were quantitatively determined (RSDs < 6.9%). Unlike GC methods, no derivatization or decarboxylation was required prior to UHPSFC analysis. The UHPSFC chromatographic separation of cannabinoids displayed an inverse elution order compared to UHPLC. Combining with PDA-MS, this orthogonality is valuable for discrimination of cannabinoids in complex matrices. The developed method was validated, and the quantification results were compared with a standard UHPLC method. The RSDs of these two methods were within ±13.0%. Finally, chemometric analysis including principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to differentiate between cannabis samples.


Subject(s)
Cannabinoids/analysis , Cannabis/chemistry , Chromatography, Supercritical Fluid , Mass Spectrometry , Cannabinoids/chemistry , Humans , Least-Squares Analysis , Limit of Detection , Molecular Structure , Plant Extracts/chemistry , Principal Component Analysis
3.
J AOAC Int ; 98(6): 1523-8, 2015.
Article in English | MEDLINE | ID: mdl-26651563

ABSTRACT

An HPLC single-laboratory validation was performed for the detection and quantification of the 11 major cannabinoids in most cannabis varieties, namely, cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabinol (CBN), Δ9-trans-tetrahydrocannabinol (Δ9-THC), Δ8-trans-tetrahydrocannabinol (Δ8-THC), cannabicyclol (CBL), cannabichromene (CBC), and Δ9-tetrahydrocannabinolic acid-A (THCAA). The analysis was carried out on the biomass and extracts of these varieties. Methanol-chloroform (9:1, v/v) was used for extraction, 4-androstene-3,17-dione was used as the internal standard, and separation was achieved in 22.2 min on a C18 column using a two- step gradient elution. The method was validated for the 11 cannabinoids. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area with r2 values of >0.99 for all 11 cannabinoids. Method accuracy was determined through a spike study, and recovery ranged from 89.7 to 105.5% with an RSD of 0.19 to 6.32% for CBDA, CBD, THCV, CBN, Δ9-THC, CBL, CBC, and THCAA; recovery was 84.7, 84.2, and 67.7% for the minor constituents, CBGA, CBG, and Δ8-THC, respectively, with an RSD of 2.58 to 4.96%. The validated method is simple, sensitive, and reproducible and is therefore suitable for the detection and quantification of these cannabinoids in different types of cannabis plant materials.


Subject(s)
Biomass , Cannabinoids/analysis , Cannabis/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/analysis
4.
J Forensic Sci ; 55(5): 1209-17, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20487147

ABSTRACT

The University of Mississippi has a contract with the National Institute on Drug Abuse (NIDA) to carry out a variety of research activities dealing with cannabis, including the Potency Monitoring (PM) program, which provides analytical potency data on cannabis preparations confiscated in the United States. This report provides data on 46,211 samples seized and analyzed by gas chromatography-flame ionization detection (GC-FID) during 1993-2008. The data showed an upward trend in the mean Δ(9)-tetrahydrocannabinol (Δ(9)-THC) content of all confiscated cannabis preparations, which increased from 3.4% in 1993 to 8.8% in 2008. Hashish potencies did not increase consistently during this period; however, the mean yearly potency varied from 2.5-9.2% (1993-2003) to 12.0-29.3% (2004-2008). Hash oil potencies also varied considerably during this period (16.8 ± 16.3%). The increase in cannabis preparation potency is mainly due to the increase in the potency of nondomestic versus domestic samples.


Subject(s)
Cannabinoids/chemistry , Cannabis/chemistry , Dronabinol/chemistry , Flame Ionization , Illicit Drugs/chemistry , Plant Oils/chemistry
5.
Planta Med ; 76(7): 743-50, 2010 May.
Article in English | MEDLINE | ID: mdl-19950050

ABSTRACT

Gas chromatography-flame ionization detection (GC-FID) was used to assess the chemical profile and quantification of cannabinoids to identify the differences, if existing, in the chemical constituents of in vitro propagated plants (IVP), conventionally grown plants (VP) and indoor grown mother plants (MP-Indoor) of a high THC yielding variety of Cannabis sativa L. during different developmental stages of growth. In general, THC content in all groups increased with plant age up to a highest level during the budding stage where the THC content reached a plateau before the onset of senescence. The pattern of changes observed in the concentration of other cannabinoids content with plants age has followed a similar trend in all groups of plants. Qualitatively, cannabinoids profiles obtained using GC-FID, in MP-indoor, VP and IVP plants were found to be similar to each other and to that of the field grown mother plant (MP field) of C. sativa. Minor differences observed in cannabinoids concentration within and among the groups were not found to be statistically significant. Our results confirm the clonal fidelity of IVP plants of C. sativa and suggest that the biochemical mechanism used in this study to produce the micropropagated plants does not affect the metabolic content and can be used for the mass propagation of true to type plants of this species for commercial pharmaceutical use.


Subject(s)
Analgesics, Non-Narcotic/metabolism , Cannabis/metabolism , Dronabinol/metabolism , Agriculture , Cannabis/growth & development
6.
Phytochem Anal ; 16(1): 45-8, 2005.
Article in English | MEDLINE | ID: mdl-15688956

ABSTRACT

Chemical investigation of the pollen grain collected from male plants of Cannabis sativa L. resulted in the isolation for the first time of two flavonol glycosides from the methanol extract, and the identification of 16 cannabinoids in the hexane extract. The two glycosides were identified as kaempferol 3-O-sophoroside and quercetin 3-O-sophoroside by spectroscopic methods including high-field two-dimensional NMR experiments. The characterisation of each cannabinoid was performed by GC-FID and GC-MS analyses and by comparison with both available reference cannabinoids and reported data. The identified cannabinoids were delta9-tetrahydrocannabiorcol, cannabidivarin, cannabicitran, delta9-tetrahydrocannabivarin, cannabicyclol, cannabidiol, cannabichromene, delta9-tetrahydrocannabinol, cannabigerol, cannabinol, dihydrocannabinol, cannabielsoin, 6a, 7, 10a-trihydroxytetrahydrocannabinol, 9, 10-epoxycannabitriol, 10-O-ethylcannabitriol, and 7, 8-dehydro-10-O-ethylcannabitriol.


Subject(s)
Cannabinoids/isolation & purification , Cannabis/chemistry , Kaempferols/isolation & purification , Pollen/chemistry , Quercetin/analogs & derivatives , Quercetin/isolation & purification , Chromatography/methods , Chromatography, Gas/methods , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL