Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant Physiol Biochem ; 206: 108302, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38171134

ABSTRACT

Yellow seed is one desirable trait with great potential to improve seed oil quality and yield. The present study surveys the redundant role of BnTTG1 genes in the proanthocyanidins (PA) biosynthesis, oil content and abiotic stress resistance. Stable yellow seed mutants were generated after mutating BnTTG1 by CRISPR/Cas9 genome editing system. Yellow seed phenotype could be obtained only when both functional homologues of BnTTG1 were simultaneously knocked out. Homozygous mutants of BnTTG1 homologues showed decreased thickness and PA accumulation in seed coat. Transcriptome and qRT-PCR analysis indicated that BnTTG1 mutation inhibited the expression of genes involved in phenylpropanoid and flavonoid biosynthetic pathways. Increased seed oil content and alteration of fatty acid (FA) composition were observed in homozygous mutants of BnTTG1 with enriched expression of genes involved in FA biosynthesis pathway. In addition, target mutation of BnTTG1 accelerated seed germination rate under salt and cold stresses. Enhanced seed germination capacity in BnTTG1 mutants was correlated with the change of expression level of ABA responsive genes. Overall, this study elucidated the redundant role of BnTTG1 in regulating seed coat color and established an efficient approach for generating yellow-seeded oilseed rape genetic resources with increase oil content, modified FA composition and resistance to multiple abiotic stresses.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Germination/genetics , Seeds/genetics , Seeds/metabolism , Brassica rapa/genetics , Mutagenesis , Stress, Physiological/genetics , Plant Oils/metabolism , Gene Expression Regulation, Plant
2.
Plant Biotechnol J ; 14(1): 323-31, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25998013

ABSTRACT

High oleic oil is an important industrial feedstock that has been one of the main targets for oil improvement in a number of oil crops. Crambe (Crambe abyssinica) is a dedicated oilseed crop, suitable for industrial oil production. In this study, we down-regulated the crambe fatty acid desaturase (FAD) and fatty acid elongase (FAE) genes for creating high oleic seed oil. We first cloned the crambe CaFAD2, CaFAD3 and CaFAE1 genes. Multiple copies of each of these genes were isolated, and the highly homologous sequences were used to make RNAi constructs. These constructs were first tested in Arabidopsis, which led to the elevated oleic or linoleic levels depending on the genes targeted, indicating that the RNAi constructs were effective in regulating the expression of the target genes in nonidentical but closely related species. Furthermore, down-regulation of CaFAD2 and CaFAE1 in crambe with the FAD2-FAE1 RNAi vector resulted in even more significant increase in oleic acid level in the seed oil with up to 80% compared to 13% for wild type. The high oleic trait has been stable in subsequent five generations and the GM line grew normally in greenhouse. This work has demonstrated the great potential of producing high oleic oil in crambe, thus contributing to its development into an oil crop platform for industrial oil production.


Subject(s)
Acetyltransferases/metabolism , Arabidopsis/genetics , Crambe Plant/enzymology , Down-Regulation , Fatty Acid Desaturases/metabolism , Oleic Acid/metabolism , Plant Oils/metabolism , Seeds/metabolism , Blotting, Southern , Chromosome Segregation/genetics , Fatty Acid Elongases , Gene Dosage , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL