Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 61(24): 5893-902, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23692427

ABSTRACT

Potato tubers naturally contain a number of defense substances, some of which are of major concern for food safety. Among these substances are the glycoalkaloids and calystegines. We have here analyzed levels of glycoalkaloids (α-chaconine and α-solanine) and calystegines (A3, B2, and B4) in potato tubers subjected to mechanical wounding, light exposure, or elevated temperature: stress treatments that are known or anticipated to induce glycoalkaloid levels. Basal glycoalkaloid levels in tubers varied between potato cultivars. Wounding and light exposure, but not heat, increased tuber glycoalkaloid levels, and the relative response differed among the cultivars. Also, calystegine levels varied between cultivars, with calystegine B4 showing the most marked variation. However, the total calystegine level was not affected by wounding or light exposure. The results demonstrate a strong variation among potato cultivars with regard to postharvest glycoalkaloid increases, and they suggest that the biosynthesis of glycoalkaloids and calystegines occurs independently of each other.


Subject(s)
Crops, Agricultural/chemistry , Food Handling , Food Quality , Nortropanes/analysis , Plant Tubers/chemistry , Solanaceous Alkaloids/analysis , Solanum tuberosum/chemistry , Crops, Agricultural/metabolism , Crops, Agricultural/radiation effects , Glycosylation , Hot Temperature/adverse effects , Light/adverse effects , Mechanical Phenomena , Nortropanes/chemistry , Nortropanes/metabolism , Plant Tubers/metabolism , Plant Tubers/radiation effects , Solanaceous Alkaloids/biosynthesis , Solanaceous Alkaloids/chemistry , Solanaceous Alkaloids/metabolism , Solanine/analogs & derivatives , Solanine/analysis , Solanine/chemistry , Solanine/metabolism , Solanum tuberosum/metabolism , Solanum tuberosum/radiation effects , Species Specificity , Stereoisomerism , Sweden , Up-Regulation
2.
Phytochemistry ; 70(11-12): 1345-54, 2009.
Article in English | MEDLINE | ID: mdl-19703694

ABSTRACT

Myrosinases (EC 3.2.1.147) are beta-thioglucoside glucosidases present in Brassicaceae plants. These enzymes serve to protect plants against pathogens and insect pests by initiating breakdown of the secondary metabolites glucosinolates into toxic products. Several forms of myrosinases are present in plants but the properties and role of different isoenzymes are not well understood. The dicot plant model organism Arabidopsis thaliana seems to contain six myrosinase genes (TGG1-TGG6). In order to compare the different myrosinases, cDNAs corresponding to TGG1 from leaves and TGG4 and TGG5 from roots were cloned and overexpressed in Pichia pastoris. The His-tagged recombinant proteins were purified using affinity chromatography and the preparations were homogenous according to SDS-PAGE analysis. Myrosinase activity was confirmed for all forms and compared with respect to catalytic activity towards the allyl-glucosinolate sinigrin. There was a 22-fold difference in basal activity among the myrosinases. The enzymes were active in a broad pH range, are rather thermostable and active in a wide range of salt concentrations but sensitive to high salt concentrations. The myrosinases showed different activation-inhibition responses towards ascorbic acid with maximal activity around 0.7-1 mM. No activity was registered towards desulphosinigrin and this compound did not inhibit myrosinase activity towards sinigrin. All myrosinases also displayed O-beta-glucosidase activity, although with lower efficiency compared to the myrosinase activity. The differences in catalytic properties among myrosinase isozymes for function in planta are discussed.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Genes, Plant , Glycoside Hydrolases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Ascorbic Acid/metabolism , Catalysis , DNA, Complementary , Glucosinolates/metabolism , Glycoside Hydrolases/genetics , Hydrogen-Ion Concentration , Isoenzymes , Pichia/genetics , Pichia/metabolism , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Roots/enzymology , Plant Roots/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salts , Temperature , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL