Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474613

ABSTRACT

Certain food by-products, including not-good-for-sale apples and pomegranate peels, are rich in bioactive molecules that can be collected and reused in food formulations. Their extracts, rich in pectin and antioxidant compounds, were obtained using hydrodynamic cavitation (HC), a green, efficient, and scalable extraction technique. The extracts were chemically and physically characterized and used in gluten-free and vegan cookie formulations to replace part of the flour and sugar to study whether they can mimic the role of these ingredients. The amount of flour + sugar removed and replaced with extracts was 5% and 10% of the total. Physical (dimensions, color, hardness, moisture content, water activity), chemical (total phenolic content, DPPH radical-scavenging activity), and sensory characteristics of cookie samples were studied. Cookies supplemented with the apple extract were endowed with similar or better characteristics compared to control cookies: high spread ratio, similar color, and similar sensory characteristics. In contrast, the pomegranate peel extract enriched the cookies in antioxidant molecules but significantly changed their physical and sensory characteristics: high hardness value, different color, and a bitter and astringent taste. HC emerged as a feasible technique to enable the biofortification of consumer products at a real scale with extracts from agri-food by-products.


Subject(s)
Flour , Fruit , Humans , Fruit/chemistry , Flour/analysis , Antioxidants/analysis , Sugars/analysis , Vegans , Food Handling/methods , Carbohydrates/analysis , Plant Extracts/analysis
2.
Nutrients ; 16(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38398831

ABSTRACT

The healthy properties of pomegranate fruit, a highly consumed food, have been known for a long time. However, the pomegranate supply chain is still rather inefficient, with the non-edible fraction, whose weight is roughly half the total and is endowed with plenty of valuable bioactive compounds, either disposed of or underutilized. A novel extract obtained from non-edible byproducts (called PPE), using hydrodynamic cavitation, a green, efficient, and scalable technique, was investigated for its cardiovascular effects in vivo. PPE showed efficacy in an acute phenylephrine (PE)-induced hypertensive rat model, similar to the extract of whole fruit (PFE) obtained using the same extractive technique, along with good intestinal bioaccessibility after oral administration. Finally, when chronically administered for 6 weeks to spontaneously hypertensive rats, PPE was shown to significantly contain the increase in systolic blood pressure, comparable to the reference drug Captopril, and at a dose remarkably lower than the reported effective dose of ellagic acid. The extract from the non-edible fraction of the pomegranate fruit also showed good anti-inflammation and anti-fibrotic effects. The findings of this study, along with the extraction technique, could contribute to enhancing the value of the pomegranate supply chain, relieve the related environmental burden, and potentially improve public health.


Subject(s)
Lythraceae , Pomegranate , Rats , Animals , Plant Extracts/pharmacology , Hydrodynamics , Fruit , Rats, Inbred SHR
3.
Antioxidants (Basel) ; 12(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37507891

ABSTRACT

Pomegranate (Punica granatum L.) is a polyphenol-rich edible food and medicinal plant of ancient origin, containing flavonols, anthocyanins, and tannins, with ellagitannins as the most abundant polyphenols. In the last decades, its consumption and scientific interest increased, due to its multiple beneficial effects. Pomegranate is a balausta fruit, a large berry surrounded by a thick colored peel composed of exocarp and mesocarp with edible arils inside, from which the pomegranate juice can be produced by pressing. Seeds are used to obtain the seed oil, rich in fatty acids. The non-edible part of the fruit, the peel, although generally disposed as a waste or transformed into compost or biogas, is also used to extract bioactive products. This review summarizes some recent preclinical and clinical studies on pomegranate, which highlight promising beneficial effects in several fields. Although further insight is needed on key aspects, including the limited oral bioavailability and the role of possible active metabolites, the ongoing development of suitable encapsulation and green extraction techniques enabling the valorization of waste pomegranate products point to the great potential of pomegranate and its bioactive constituents as dietary supplements or adjuvants in therapies of cardiovascular and non-cardiovascular diseases.

4.
Molecules ; 27(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630720

ABSTRACT

DRIFT, HPLC-MS, and SPME-GC/MS analyses were used to unveil the structure and the main functional compounds of red (blood) orange (Citrus sinensis) and bitter orange (Citrus aurantium). The IntegroPectin samples show evidence that these new citrus pectins are comprised of pectin rich in RG-I hairy regions functionalized with citrus biophenols, chiefly flavonoids and volatile molecules, mostly terpenes. Remarkably, IntegroPectin from the peel of fresh bitter oranges is the first high methoxyl citrus pectin extracted via hydrodynamic cavitation, whereas the red orange IntegroPectin is a low methoxyl pectin. C. aurantium IntegroPectin has a uniquely high concentration of adsorbed flavonoids, especially the flavanone glycosides hesperidin, naringin, and eriocitrin.


Subject(s)
Citrus sinensis , Citrus , Hesperidin , Citrus/chemistry , Citrus sinensis/chemistry , Flavonoids/analysis , Pectins
5.
Int J Mol Sci ; 22(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34502276

ABSTRACT

Tested in vitro on SH-SY5Y neuroblastoma cells, grapefruit IntegroPectin is a powerful protective, antioxidant and antiproliferative agent. The strong antioxidant properties of this new citrus pectin, and its ability to preserve mitochondrial membrane potential and morphology, severely impaired in neurodegenerative disorders, make it an attractive therapeutic and preventive agent for the treatment of oxidative stress-associated brain disorders. Similarly, the ability of this pectic polymer rich in RG-I regions, as well as in naringin, linalool, linalool oxide and limonene adsorbed at the outer surface, to inhibit cell proliferation or even kill, at high doses, neoplastic cells may have opened up new therapeutic strategies in cancer research. In order to take full advantage of its vast therapeutic and preventive potential, detailed studies of the molecular mechanism involved in the antiproliferative and neuroprotective of this IntegroPectin are urgently needed.


Subject(s)
Antioxidants/pharmacology , Citrus paradisi/chemistry , Neuroprotective Agents/pharmacology , Pectins/chemistry , Pectins/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Neuroblastoma/drug therapy , Neuroblastoma/pathology , X-Ray Diffraction
6.
Article in English | MEDLINE | ID: mdl-34574446

ABSTRACT

Immersion in forest environments was shown to produce beneficial effects to human health, in particular psychophysical relaxation, leading to its growing recognition as a form of integrative medicine. However, limited evidence exists about the statistical significance of the effects and their association with external and environmental variables and personal characteristics. This experimental study aimed to substantiate the very concept of forest therapy by means of the analysis of the significance of its effects on the mood states of anxiety, depression, anger and confusion. Seven forest therapy sessions were performed in remote areas and a control one in an urban park, with participants allowed to attend only one session, resulting in 162 psychological self-assessment questionnaires administered before and after each session. Meteorological comfort, the concentration of volatile organic compounds in the forest atmosphere and environmental coherence were identified as likely important external and environmental variables. Under certain conditions, forest therapy sessions performed in remote sites were shown to outperform the control session, at least for anxiety, anger and confusion. A quantitative analysis of the association of the outcomes with personal sociodemographic characteristics revealed that only sporting habits and age were significantly associated with the outcomes for certain psychological domains.


Subject(s)
Anxiety , Forests , Anxiety Disorders , Humans , Pilot Projects , Relaxation
7.
Antibiotics (Basel) ; 9(9)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911640

ABSTRACT

Grapefruit and lemon pectin obtained from the respective waste citrus peels via hydrodynamic cavitation in water only are powerful, broad-scope antimicrobials against Gram-negative and -positive bacteria. Dubbed IntegroPectin, these pectic polymers functionalized with citrus flavonoids and terpenes show superior antimicrobial activity when compared to commercial citrus pectin. Similar to commercial pectin, lemon IntegroPectin determined ca. 3-log reduction in Staphylococcus aureus cells, while an enhanced activity of commercial citrus pectin was detected in the case of Pseudomonas aeruginosa cells with a minimal bactericidal concentration (MBC) of 15 mg mL-1. Although grapefruit and lemon IntegroPectin share equal MBC in the case of P. aeruginosa cells, grapefruit IntegroPectin shows boosted activity upon exposure of S. aureus cells with a 40 mg mL-1 biopolymer concentration affording complete killing of the bacterial cells. Insights into the mechanism of action of these biocompatible antimicrobials and their effect on bacterial cells, at the morphological level, were obtained indirectly through Fourier Transform Infrared spectroscopy and directly through scanning electron microscopy. In the era of antimicrobial resistance, these results are of great societal and sanitary relevance since citrus IntegroPectin biomaterials are also devoid of cytotoxic activity, as already shown for lemon IntegroPectin, opening the route to the development of new medical treatments of polymicrobial infections unlikely to develop drug resistance.

8.
ChemMedChem ; 15(23): 2228-2235, 2020 12 03.
Article in English | MEDLINE | ID: mdl-32857470

ABSTRACT

First reported in the late 1930s and partly explained in 1970, the antibacterial activity of pectin remained almost ignored until the late 1990s. The concomitant emergence of research on natural antibacterials and new usages of pectin polysaccharides, including those in medicine widely researched in Russia, has led to a renaissance of research into the physiological properties of this uniquely versatile polysaccharide ubiquitous in plants and fruits. By collecting scattered information, this study provides an updated overview of the subtle factors affecting the behaviour of pectin as an antimicrobial. Less-degraded pectin extracted by acid-free routes, we argue in the conclusions, will soon find applications from new treatments for polymicrobial infections to use as an implantable biomaterial in tissue and bone engineering.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biocompatible Materials/pharmacology , Pectins/pharmacology , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Microbial Sensitivity Tests , Pectins/chemistry
9.
ChemistryOpen ; 9(5): 628-630, 2020 05.
Article in English | MEDLINE | ID: mdl-32489768

ABSTRACT

Pectin extracted via hydrodynamic cavitation in water only from waste lemon peel and further isolated via freeze drying displays significant antibacterial activity against Staphylococcus aureus, a Gram positive pathogen which easily contaminates food. The antibacterial effect of the new IntegroPectin is largely superior to that of commercial citrus pectin, opening the way to advanced applications of a new bioproduct now obtainable in large amounts and at low cost from citrus juice industry's waste.


Subject(s)
Anti-Bacterial Agents/chemistry , Citrus/chemistry , Fruit/chemistry , Pectins/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Fruit and Vegetable Juices , Humans , Hydrodynamics , Pectins/pharmacology , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL