Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Affiliation country
Publication year range
1.
Fitoterapia ; 175: 105883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38458497

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. As one of the major degradation pathways, autophagy plays a pivotal role in maintaining the effective turnover of proteins and damaged organelles in cells. Lewy bodies composed of α-synuclein (α-syn) abnormally aggregated in the substantia nigra are important pathological features of PD, and autophagy dysfunction is considered to be an important factor leading to abnormal aggregation of α-syn. Phenylpropionamides (PHS) in the seed of Cannabis sativa L. have a protective effect on neuroinflammation and antioxidant activity. However, the therapeutic role of PHS in PD is unclear. In this study, the seeds of Cannabis sativa L. were extracted under reflux with 60% EtOH-H2O, and the 60% EtOH-H2O elution fraction was identified as PHS with the UPLC-QTOF-MS. The 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice was used for behavioral and pharmacodynamic experiments. Behavioral symptoms were improved, Nissl-stained and TH-positive neurons in the substantia nigra were significantly increased in PHS-treated MPTP-induced PD model mice. Compared with the model group, PHS treatment reduced the expression level of α-syn, and the expression of TH increased significantly by western blotting, compared with the model group, the PHS group suppressed Caspase 3 and Bax expression and promoted Bcl-2 expression and levels of p62 decreased significantly, the ratio of LC3-II/I and p-mTOR/mTOR in the PHS group had a downward trend, suggesting that the therapeutic effect of PHS on MPTP-induced PD model mice may be triggered by the regulation of autophagy.


Subject(s)
Autophagy , Cannabis , Mice, Inbred C57BL , Neuroprotective Agents , Seeds , Animals , Autophagy/drug effects , Mice , Seeds/chemistry , Cannabis/chemistry , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/isolation & purification , Parkinson Disease/drug therapy , Substantia Nigra/drug effects , Disease Models, Animal , TOR Serine-Threonine Kinases/metabolism
2.
Phytomedicine ; 128: 155517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518650

ABSTRACT

BACKGROUND: Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE: This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS: Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS: Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION: Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.


Subject(s)
Berberine , Gastrointestinal Microbiome , Phenylacetates , Thrombosis , Animals , Gastrointestinal Microbiome/drug effects , Berberine/pharmacology , Berberine/analogs & derivatives , Thrombosis/prevention & control , Male , Mice , Phenylacetates/pharmacology , Carrageenan , Coptis/chemistry , Disease Models, Animal , Mice, Inbred C57BL , Fecal Microbiota Transplantation , RNA, Ribosomal, 16S
3.
Mikrochim Acta ; 191(3): 170, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38427110

ABSTRACT

Gold nanostructures and a Nafion modified screen-printed carbon electrode (Nafion/AuNS/SPCE) were developed to assess the cell viability of Parkinson's disease (PD) cell models. The electrochemical measurement of cell viability was reflected by catecholamine neurotransmitter (represented by dopamine) secretion capacity, followed by a traditional tetrazolium-based colorimetric assay for confirmation. Due to the  capacity to synthesize, store, and release catecholamines as well as their unlimited homogeneous proliferation, and ease of manipulation, pheochromocytoma (PC12) cells were used for PD cell modeling. Commercial low-differentiated and highly-differentiated PC12 cells, and home-made nerve growth factor (NGF) induced low-differentiated PC12 cells (NGF-differentiated PC12 cells) were included in the modeling. This approach achieved sensitive and rapid determination of cellular modeling and intervention states. Notably, among the three cell lines, NGF-differentiated PC12 cells displayed the enhanced neurotransmitter secretion level accompanied with attenuated growth rate, incremental dendrites in number and length that were highly resemble with neurons. Therefore, it was selected as the PD-tailorable modeling cell line. In short, the electrochemical sensor can be used to sensitively determine the biological function of neuron-like PC12 cells with negligible destruction and to explore the protective and regenerative impact of various substances on nerve cell model.


Subject(s)
Adrenal Gland Neoplasms , Fluorocarbon Polymers , Parkinson Disease , Rats , Animals , Catecholamines/metabolism , PC12 Cells , Nerve Growth Factor , Drug Evaluation, Preclinical , Neurotransmitter Agents
4.
Zhongguo Zhong Yao Za Zhi ; 49(2): 443-452, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403320

ABSTRACT

Chinese patent medicine preparations containing Epimedii Folium and Psoraleae Fructus have been associated with the occurrence of idiosyncratic drug-induced liver injury(IDILI). However, the specific toxic biomarkers and mechanisms underlying these effects remain unclear. This study aimed to comprehensively assess the impact of bavachin and epimedin B, two principal consti-tuents found in Psoraleae Fructus and Epimedii Folium, on an IDILI model induced by tumor necrosis factor-α(TNF-α) treatment, both in vitro and in vivo. To evaluate the extent of liver injury, various parameters were assessed. Lactate dehydrogenase(LDH) release in the cell culture supernatant, as well as the levels of alanine aminotransferase(ALT) and aspartate transaminase(AST) in mouse plasma were measured. Additionally, histological analysis employing hematoxylin-eosin staining was performed to observe liver tissue changes indicative of the severity of liver injury. Furthermore, a pseudo-targeted metabolomics approach was employed, followed by multivariate analysis, to identify differential metabolites. These identified metabolites were subsequently subjected to Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. The results showed that at the cellular level, after 2 hours of TNF-α stimulation, bavachin significantly increased the release of LDH in HepG2 cells compared to the normal group and the group treated alone; after the combination of bavachin and epimedin B, the release of LDH further significantly increased on the original basis. Similarly, although the individual or combination treatments of bavachin and epimedin B did not induce liver injury in normal mice, the combination of both drugs induced marked liver injury in TNF-α treated mice, leading to a significant elevation in plasma AST and ALT levels and substantial infiltration of inflammatory immune cells in the liver tissue. Pseudo-targeted metabolomics analysis identified seven common differential metabolites. Among these, D-glucosamine-6-phosphate, N1-methyl-2-pyridone-5-carboxamide, 17beta-nitro-5a-androstane, irisolidone-7-O-glucuronide, and N-(1-deoxy-1-fructosyl) valine emerged as potential biomarkers, with an area under the curve(AUC) exceeding 0.9. Furthermore, our results suggest that the metabolism of nicotinic acid and nicotinamide, as well as the linoleic acid metabolic pathway, may play pivotal roles in bavachin and epimedin B-induced IDILI. In conclusion, within an immune-stressed environment mediated by TNF-α, bavachin and epimedin B appear to induce IDILI through disruptions in metabolic processes.


Subject(s)
Chemical and Drug Induced Liver Injury , Flavonoids , Tumor Necrosis Factor-alpha , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Liver , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology
5.
Zhen Ci Yan Jiu ; 49(2): 177-184, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38413039

ABSTRACT

OBJECTIVES: To observe the curative efficacy of auricular comprehensive therapy on menstrual migraine(MM) and its effect on serum prostaglandin F2α(PGF2α), prostaglandin E2(PGE2) contents and ratio, so as to explore its possible mechanism. METHODS: A total of 66 patients with MM of liver-fire syndrome were randomly divided into observation group (33 cases, 2 cases dropped off) and control group (33 cases, 2 cases dropped off), and 20 healthy women were included in the normal group. Patients in the control group were given flunarizine hydrochloride capsules orally, twice a day, for 3 consecutive weeks. Patients in the observation group were treated with auricular comprehensive therapy, starting 2-5 days before menstrual cramps, once a week, for a total of 3 weeks. The visual analogue scale (VAS) and migraine score were evaluated before and after treatment, and follow-up for 1 and 2 menstrual cycles. Serum PGF2α and PGE2 contents were measured before and after treatment, and the PGF2α/PGE2 ratio was calculated. The clinical effective rates in the two groups were calculated. RESULTS: After treatment and follow-up for 1 and 2 menstrual cycles, the VAS scores, headache degree, the frequency and duration of headache attacks, as well as accompanying symptoms of the observation and control groups were lower than those before treatment(P<0.05), and those of the observation group was lower than those of the control group(P<0.05). Before treatment, the PGF2α contents in the observation and control group were significantly higher(P<0.05), while the PGE2 contents lower(P<0.05) and PGF2α/PGE2 ratio higher(P<0.05) than those in the normal group. After treatment, the serum PGF2α contents in the observation and control group were significantly reduced compared with which before treatment(P<0.05), and were lower in the observation group than that in the control group (P<0.05). The serum PGE2 contents in the observation and control groups were significantly increased after treatment compared with which before treatment(P<0.05), with the contents in the observation group higher than that in the control group(P<0.05). The serum PGF2α/PGE2 ratio in the observation and control group was significantly reduced after treatment compared with which before treatment(P<0.05), with the control group higher than the normal group(P<0.05), and the observation group lower than the control group(P<0.05). The clinical effective rate of the observation group was 93.5% (29/31), and that of the control group was 77.4% (24/31). The effective rate of the observation group was significantly higher than that of the control group(P<0.05). CONCLUSIONS: The curative efficacy of auricular comprehensive therapy on MM with liver-fire syndrome is significantly better than that of oral flunarizine hydrochloride capsules, especially in relieving hea-daches, reducing the frequency and duration of headache attacks, as well as accompanying symptoms. Its mechanism may be related to regulating the abnormal PGF2α and PGE2 contents of patients and reducing the ratio of PGF2α/PGE2.


Subject(s)
Migraine Disorders , Prostaglandins , Humans , Female , Flunarizine , Dinoprostone , Migraine Disorders/drug therapy , Headache/therapy , Syndrome
6.
ACS Appl Mater Interfaces ; 16(10): 12310-12320, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38412031

ABSTRACT

Pyroptosis has been reported to improve the antitumor effect by evoking a more intense immune response and a therapeutic effect. For phototherapy, several photosensitizers have been found to initiate pyroptosis. However, the effect of pyroptosis associated with apoptosis in enhancing the antitumor therapy needs sufficient characterization, especially under long-term treatment. As a NIR photosensitizer, heptamethine cyanines have been discovered for anticancer phototherapy for deep tissue penetration and inherent tumor-targeted capability. However, they are not quite stable for long-term performance. To investigate the effect of pyroptosis along with apoptosis on the anticancer immune responses and phototherapy, here, we chemically modulate the cyanine IR780 to regulate hydrophobicity, stability, and intracellular targeting. Two photosensitizers, T780T-TPP and T780T-TPP-C12, were finally optimized and showed excellent photostability with high photothermal conversion efficiency. Although the cellular uptake of the two molecules was both mediated by OATP transporters, T780T-TPP induced tumor cell death via pyroptosis and apoptosis and accumulated in tumor accumulation, while T780T-TPP-C12 was prone to accumulate in the liver. Ultimately, via one injection-multiple irradiation treatment protocol, T780T-TPP displayed a significant antitumor effect, even against the growth of large tumors (200 mm3).


Subject(s)
Nanoparticles , Neoplasms , Humans , Pyroptosis , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy/methods , Neoplasms/drug therapy , Apoptosis , Mitochondria , Nanoparticles/chemistry , Cell Line, Tumor
7.
ACS Nano ; 18(6): 4957-4971, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38288709

ABSTRACT

Vaccine technology is effective in preventing and treating diseases, including cancers and viruses. The efficiency of vaccines can be improved by increasing the dosage and frequency of injections, but it would bring an extra burden to people. Therefore, it is necessary to develop vaccine-boosting techniques with negligible side effects. Herein, we reported a cupping-inspired noninvasive suction therapy that could enhance the efficacy of cancer/SARS-CoV-2 nanovaccines. Negative pressure caused mechanical immunogenic cell death and released endogenous adjuvants. This created a subcutaneous niche that would recruit and activate antigen-presenting cells. Based on this universal central mechanism, suction therapy was successfully applied in a variety of nanovaccine models, which include prophylactic/therapeutic tumor nanovaccine, photothermal therapy induced in situ tumor nanovaccine, and SARS-CoV-2 nanovaccine. As a well-established physical therapy method, suction therapy may usher in an era of noninvasive and high-safety auxiliary strategies when combined with vaccines.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Vaccines , Humans , Nanovaccines , Suction , Neoplasms/therapy , Physical Therapy Modalities , Immunotherapy
8.
J Cancer ; 15(4): 889-907, 2024.
Article in English | MEDLINE | ID: mdl-38230219

ABSTRACT

Background: Randomized controlled trials (RCTs) have demonstrated that combining Chinese herbal injections (CHIs) with oxaliplatin plus tegafur (SOX) chemotherapy regimens improves clinical effectiveness and reduces adverse reactions in patients with advanced gastric cancer (AGC). These RCTs highlight the potential applications of CHIs and their impact on AGC patient prognosis. However, there is insufficient comparative evidence on the clinical effectiveness and safety of different CHIs when combined with SOX. Therefore, we performed a network meta-analysis to rank the clinical effectiveness and safety of different CHIs when combined with SOX chemotherapy regimens. This study aimed to provide evidence for selecting appropriate CHIs in the treatment of patients with AGC. Methods: We searched eight databases from their inception until March 2023. Surface Under the Cumulative Ranking Curve (SUCRA) probability values were used to rank the treatment measures, and the Confidence in Network Meta-Analysis (CINeMA) software assessed the grading of evidence. Results: A total of 51 RCTs involving 3,703 AGC patients were identified. Huachansu injections + SOX demonstrated the highest clinical effectiveness (SUCRA: 78.17%), significantly reducing the incidence of leukopenia (93.35%), thrombocytopenia (80.19%), and nausea and vomiting (95.15%). Shenfu injections + SOX improved Karnofsky's Performance Status (75.59%) and showed a significant reduction in peripheral neurotoxicity incidence (88.26%). Aidi injections + SOX were most effective in reducing the incidence of liver function damage (75.16%). According to CINeMA, most confidence rating results were classified as "low". Conclusion: The combination of CHIs and SOX shows promising effects in the treatment of AGC compared to SOX alone. Huachansu and Shenfu injections offer the greatest overall advantage among the CHIs, while Aidi injections are optimal for reducing the incidence of liver damage. However, further rigorous RCTs with larger sample sizes and additional pharmacological studies are necessary to reinforce these findings.

9.
Adv Healthc Mater ; 13(10): e2303432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38069831

ABSTRACT

Small molecular organic optical agents with synergistic effects of photothermal therapy (PTT) and photodynamic therapy (PDT), hold credible promise for anti-tumor therapy by overcoming individual drawbacks and enhancing photon utilization efficiency. However, developing effective dual-function PTT-PDT photosensitizers (PSs) for efficient synergistic phototherapy remains challenging. Here, a benz[c,d]indolium-substituted hemicyanine named Rh-BI, which possesses a high photothermal conversion efficiency of 41.67% by exhaustively suppressing fluorescence emission, is presented. Meanwhile, the rotating phenyl group at meso-site induces charge recombination to enhance the molar extinction coefficient up to 13.58 × 104 M-1cm-1, thereby potentiating the photodynamic effect. Under 808 nm irradiation, Rh-BI exhibits significant phototoxicity in several cancer cell types in vitro with IC50 values as low as ≈0.5 µM. Moreover, treatment of 4T1 tumor-bearing mice with Rh-BI under laser irradiation successfully inhibits tumor growth. In a word, an effective strategy is developed to build PTT-PDT dual-functional optical materials based on hemicyanine backbone for tumor therapy by modulating conjugation system interaction to adjust the energy consumption pathway.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mice , Phototherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Carbocyanines/therapeutic use , Neoplasms/drug therapy , Cell Line, Tumor
10.
Small ; 20(20): e2306909, 2024 May.
Article in English | MEDLINE | ID: mdl-38100246

ABSTRACT

Helicobacter pylori (H. pylori) infection presents increasing challenges to antibiotic therapies in limited penetration through gastric mucus, multi-drug resistance (MDR), biofilm formation, and intestinal microflora dysbiosis. To address these problems, herein, a mucus-penetrating phototherapeutic nanomedicine (RLs@T780TG) against MDR H. pylori infection is engineered. The RLs@T780TG is assembled with a near-infrared photosensitizer T780T-Gu and an anionic component rhamnolipids (RLs) for deep mucus penetration and light-induced anti-H. pylori performances. With optimized suitable size, hydrophilicity and weak negative surface, the RLs@T780TG can effectively penetrate through the gastric mucus layer and target the inflammatory site. Subsequently, under irradiation, the structure of RLs@T780TG is disrupted and facilitates the T780T-Gu releasing to target the H. pylori surface and ablate multi-drug resistant (MDR) H. pylori. In vivo, RLs@T780TG phototherapy exhibits impressive eradication against H. pylori. The gastric lesions are significantly alleviated and intestinal bacteria balance is less affected than antibiotic treatment. Summarily, this work provides a potential nanomedicine design to facilitate in vivo phototherapy in treatment of H. pylori infection.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Mucus , Helicobacter pylori/drug effects , Helicobacter Infections/drug therapy , Mucus/metabolism , Animals , Phototherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glycolipids/chemistry , Glycolipids/pharmacology , Mice , Administration, Oral
11.
J Transl Med ; 21(1): 921, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38115075

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most prevalent metabolic syndromes worldwide. However, no approved pharmacological treatments are available for MAFLD. Chenpi, one kind of dried peel of citrus fruits, has traditionally been utilized as a medicinal herb for liver diseases. Didymin is a newly identified oral bioactive dietary flavonoid glycoside derived from Chenpi. In this study, we investigated the therapeutic potential of Didymin as an anti-MAFLD drug and elucidated its underlying mechanisms. METHODS: High-fat diet (HFD)-induced MAFLD mice and alpha mouse liver 12 (AML12) cells were utilized to evaluate the effects and mechanisms of Didymin in the treatment of MAFLD. Liver weight, serum biochemical parameters, and liver morphology were examined to demonstrate the therapeutic efficacy of Didymin in MAFLD treatment. RNA-seq analysis was performed to identify potential pathways that could be affected by Didymin. The impact of Didymin on Sirt1 was corroborated through western blot, molecular docking analysis, microscale thermophoresis (MST), and deacetylase activity assay. Then, a Sirt1 inhibitor (EX-527) was utilized to confirm that Didymin alleviates MAFLD via Sirt1. Western blot and additional assays were used to investigate the underlying mechanisms. RESULTS: Our results suggested that Didymin may possess therapeutic potential against MAFLD in vitro and in vivo. By promoting Sirt1 expression as well as directly binding to and activating Sirt1, Didymin triggers downstream pathways that enhance mitochondrial biogenesis and function while reducing apoptosis and enhancing lipophagy. CONCLUSIONS: These suggest that Didymin could be a promising medication for MAFLD treatment. Furthermore, its therapeutic effects are mediated by Sirt1.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sirtuin 1 , Animals , Mice , Sirtuin 1/metabolism , Organelle Biogenesis , Molecular Docking Simulation , Flavonoids/pharmacology , Flavonoids/therapeutic use , Glycosides/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism
12.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5851-5862, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114181

ABSTRACT

This study investigated the mechanism of Zexie Decoction(ZXD) in promoting white adipose tissue browning/brown adipose tissue activation based on the GLP-1R/cAMP/PKA/CREB pathway. A hyperlipidemia model was induced by a western diet(WD) in mice, and the mice were divided into a control group, a model group(WD), and low-, medium-, and high-dose ZXD groups. An adipogenesis model was induced in 3T3-L1 cells in vitro, and with forskolin(FSK) used as a positive control, low-, medium-, and high-dose ZXD groups were set up. Immunohistochemistry and immunofluorescence results showed that compared with the WD group, ZXD promoted the expression of UCP1 in white and brown adipose tissues, and also upregulated UCP1, CPT1ß, PPARα, and other genes in the cells. Western blot analysis showed a dose-dependent increase in the protein expression of PGC-1α, UCP1, and PPARα with ZXD treatment, indicating that ZXD could promote the white adipose tissue browning/brown adipose tissue activation. Hematoxylin-eosin(HE) staining results showed that after ZXD treatment, white and brown adipocytes were significantly reduced in size, and the mRNA expression of ATGL, HSL, MGL, and PLIN1 was significantly upregulated as compared with the results in the WD group. Oil red O staining and biochemical assays indicated that ZXD improved lipid accumulation and promoted lipolysis. Immunohistochemistry and immunofluorescence staining for p-CREB revealed that ZXD reversed the decreased expression of p-CREB caused by WD. In vitro intervention with ZXD increased the protein expression of CREB, p-CREB, and p-PKA substrate, and increased the mRNA level of CREB. ELISA detected an increase in intracellular cAMP concentration with ZXD treatment. Molecular docking analysis showed that multiple active components in Alismatis Rhizoma and Atractylodis Macrocephalae Rhizoma could form stable hydrogen bond interactions with GLP-1R. In conclusion, ZXD promotes white adipose tissue browning/brown adipose tissue activation both in vivo and in vitro, and its mechanism of action may be related to the GLP-1R/cAMP/PKA/CREB pathway.


Subject(s)
Adipose Tissue, Brown , PPAR alpha , Mice , Animals , Molecular Docking Simulation , PPAR alpha/metabolism , Adipose Tissue, White , RNA, Messenger/metabolism
13.
Zhongguo Zhong Yao Za Zhi ; 48(22): 5993-6002, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114205

ABSTRACT

Vascular dementia(VD) is a condition of cognitive impairment due to acute and chronic cerebral hypoperfusion. The available therapies for VD mainly focus on mitigating cerebral ischemia, improving cognitive function, and controlling mental behavior. Achievements have been made in the basic and clinical research on the treatment of VD with traditional Chinese medicine(TCM) active components, including Ginkgo leaf extract, puerarin, epimedium, tanshinone, and ginsenoside. Most of these components have anti-inflammatory, anti-apoptotic, anti-oxidant, and neuroprotective effects, and puerarin demonstrates excellent performance in mitigating cholinergic nervous system disorders and improving synaptic plasticity. Puerarin, ginkgetin, and epimedium are all flavonoids, while tanshinone is a diterpenoid. Puerariae Lobatae Radix, pungent in nature, can induce clear Yang to reach the cerebral orifices and has the wind medicine functions of ascending, dispersing, moving, and scurrying. Puerariae Lobatae Radix entering collaterals will dredge blood vessels to promote blood flow, and that entering the sweat pore will open the mind, which is in line with the TCM pathogenesis characteristics of VD. This study reviews the progress in the mechanism of puerarin, the main active component of Puerariae Lobatae Radix, in treating VD. Puerarin can ameliorate cholinergic nervous system disorders, reduce excitotoxicity, anti-inflammation, inhibit apoptosis, alleviate oxidative stress injury, enhance synaptic plasticity, up-regulate neuroprotective factor expression, promote cerebral circulation metabolism, and mitigate Aß injury. The pathways of action include activating nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE), vascular endothelial growth factor(VEGF), extracellular regulated protein kinases(ERK), phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt), Janus-activating kinase 2(JAK2)/signal transducer and activator of transcription 3(STAT3), AMP-activated protein kinase(AMPK), as well as inhibiting the tumor necrosis factor α(TNF-α), transient receptor potential melastatin 2(TRPM2)/N-methyl-D-aspartate receptor(NMDAR), p38 mitogen-activated protein kinase(p38 MAPK), Toll-like receptor 4(TLR4)/nuclear factor-kappaB(NF-κB), early growth response 1(Egr-1), and matrix metalloproteinase 9(MMP-9). By reviewing the papers about the treatment of VD by puerarin published by CNKI, Wanfang, VIP, PubMed, and Web of Science in the last 10 years, this study aims to support the treatment and drug development for VD.


Subject(s)
Brain Ischemia , Dementia, Vascular , Humans , Dementia, Vascular/drug therapy , Vascular Endothelial Growth Factor A , NF-kappa B/metabolism , Antioxidants , Cholinergic Agents
14.
Zhongguo Zhen Jiu ; 43(11): 1239-1245, 2023 Sep 01.
Article in English, Chinese | MEDLINE | ID: mdl-37986247

ABSTRACT

OBJECTIVES: To compare the effects of electroacupuncture (EA) with different time intervals on corticospinal excitability of the primary motor cortex (M1) and the upper limb motor function in healthy subjects and observe the after-effect rule of acupuncture. METHODS: Self-comparison before and after intervention design was adopted. Fifteen healthy subjects were included and all of them received three stages of trial observation, namely EA0 group (received one session of EA), EA6h group (received two sessions of EA within 1 day, with an interval of 6 h) and EA48h group (received two sessions of EA within 3 days, with an interval of 48 h). The washout period among stages was 1 week. In each group, the needles were inserted perpendicularly at Hegu (LI 4) on the left side, 23 mm in depth and at a non-acupoint, 0.5 cm nearby to the left side of Hegu (LI 4), separately. Han's acupoint nerve stimulator (HANS-200A) was attached to these two needles, with continuous wave and the frequency of 2 Hz. The stimulation intensity was exerted higher than the exercise threshold (local muscle twitching was visible, and pain was tolerable by healthy subjects, 1-2 mA ). The needles were retained for 30 min. Using the single pulse mode of transcranial magnetic stimulation (TMS) technique, before the first session of EA (T0) and at the moment (T1), in 2 h (T2) and 24 h (T3) after the end of the last session of EA, on the left first dorsal interosseous muscle, the amplitude, latency (LAT), resting motor threshold (rMT) of motor evoked potentials (MEPs) and the completion time of grooved pegboard test (GPT) were detected. Besides, in the EA6h group, TMS was adopted to detect the excitability of M1 (amplitude, LAT and rMT of MEPs) before the last session of EA (T0*). RESULTS: The amplitude of MEPs at T1 and T2 in the EA0 group, at T0* in the EA6h group and at T1, T2 and T3 in the EA48h group was higher when compared with the value at T0 in each group separately (P<0.001). At T1, the amplitude of MEPs in the EA0 group and the EA48h group was higher than that in the EA6h group (P<0.001, P<0.01); at T2, it was higher in the EA0 group when compared with that in the EA6h group (P<0.01); at T3, the amplitude in the EA0 group and the EA6h group was lower than that of the EA48h group (P<0.001). The LAT at T1 was shorter than that at T0 in the three groups (P<0.05), and the changes were not obvious at the rest time points compared with that at T0 (P > 0.05). The GPT completion time of healthy subjects in the EA0 group and the EA48h group at T1, T2 and T3 was reduced in comparison with that at T0 (P<0.001). The completion time at T3 was shorter than that at T0 in the EA6h group (P<0.05); at T2, it was reduced in the EA48h group when compared with that of the EA6h group (P<0.05). There were no significant differences in rMT among the three groups and within each group (P>0.05). CONCLUSIONS: Under physiological conditions, EA has obvious after-effect on corticospinal excitability and upper limb motor function. The short-term interval protocol (6 h) blocks the after-effect of EA to a certain extent, while the long-term interval protocol (48 h) prolongs the after-effect of EA.


Subject(s)
Electroacupuncture , Motor Cortex , Humans , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Upper Extremity , Exercise , Muscle, Skeletal/physiology
15.
Phytother Res ; 37(10): 4755-4770, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37846157

ABSTRACT

Chronic social isolation (SI) stress, which became more prevalent during the COVID-19 pandemic, contributes to abnormal behavior, including mood changes and cognitive impairment. Known as a functional nutrient, betaine has potent antioxidant and anti-inflammatory properties in vivo. However, whether betaine can alleviate the abnormal behavior induced by chronic SI in mice remains unknown. In this study, we investigated the efficacy of betaine in the treatment of behavioral changes and its underlying mechanism. Three-week-old male mice were randomly housed for 8 weeks in either group housing (GH) or SI. The animals were divided into normal saline-treated GH, normal saline-treated SI, and betaine-treated SI groups in the sixth week. The cognitive and depression-like behavior was determined in the eighth week. We found that long-term betaine administration improved cognitive behavior in SI mice but failed to prevent depression-like behavior. Moreover, long-term betaine administration inhibited hippocampal microglia over-activation and polarized microglia toward the M2 phenotype, which effectively inhibited the expression of inflammatory factors in SI mice. Finally, the protective effect of betaine treatment in SI mice might not be due to altered activity of the hypothalamic-pituitary-adrenal axis. Collectively, our findings reveal that betaine can improve SI-induced cognitive impairment, thus providing an alternative natural source for the prevention of memory loss caused by SI or loneliness.


Subject(s)
Betaine , Cognitive Dysfunction , Mice , Male , Animals , Humans , Betaine/adverse effects , Betaine/metabolism , Microglia , Hypothalamo-Hypophyseal System , Pandemics , Saline Solution/adverse effects , Saline Solution/metabolism , Pituitary-Adrenal System , Hippocampus , Social Isolation/psychology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/chemically induced
16.
Phytomedicine ; 119: 155010, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586160

ABSTRACT

BACKGROUND: Not many drugs with fewer side effects are available for the treatment of rheumatoid arthritis (RA). Ganoderma lucidum polysaccharide peptide (GLPP) has good immunomodulatory effects, but whether it is effective in managing RA is not clear. PURPOSE: This study was conducted to examine the anti-RA activity and possible mechanisms of GLPP in collagen-induced arthritis (CIA) rats. METHODS: Male Wistar rats were intradermally injected with bovine type II collagen in the tail base to establish the CIA model and were orally administered 100 or 200 mg/kg GLPP for 35 days. Paw thickness, clinical arthritis scores, gait analysis, organ index determination, blood cell counts, micro-CT imaging and pathological staining were performed on the rats. Liver and kidney function were measured by commercial kits, and antibody levels were measured by ELISA kits. RA-related protein levels were detected by Western blotting. RESULTS: GLPP effectively alleviated CIA symptoms and reduced immune organ indexes, antibody levels and systemic organ injury. GLPP decreased the protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, matrix metalloproteinase (MMP)2, MMP9, MMP13, BCL-2, OPN, ß-Catenin, and hypoxia inducible factor (HIF)-1α and increased the protein expression of BAX in the joint tissues of CIA rats. Moreover, GLPP decreased the phosphorylation levels of p65, IκB-α and ERK1/2. CONCLUSION: GLPP effectively alleviated RA symptoms in CIA rats by inhibiting the NF-κB and MAPK pathways. This study suggests a promising therapeutic effect of mushroom-derived polysaccharide peptides on RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Reishi , Rheumatic Fever , Rats , Male , Animals , Cattle , NF-kappa B/metabolism , MAP Kinase Signaling System , Rats, Wistar , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Arthritis, Experimental/pathology , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism
17.
Biomaterials ; 300: 122205, 2023 09.
Article in English | MEDLINE | ID: mdl-37348324

ABSTRACT

The use of overwhelming reactive oxygen species (ROS) attack has shown great potential for treating aggressive malignancies; however, targeting this process for further applications is greatly hindered by inefficiency and low selectivity. Here, a novel strategy for ROS explosion induced by tumor microenvironment-initiated lipid redox cycling was proposed, which was developed by using soybean phosphatidylcholine (SPC) to encapsulate lactate oxidase (LOX) and sorafenib (SRF) self-assembled nanoparticles (NPs), named LOX/SRF@Lip. SPC is not only the delivery carrier but an unsaturated lipid supplement for ROS explosion. And LOX catalyzes excessive intratumoral lactate to promote the accumulation of large amounts of H2O2. Then, H2O2 reacts with excessive endogenous iron ions to generate amounts of hydroxyl radical for the initiation of SPC peroxidation. Once started, the reaction will proceed via propagation to form new lipid peroxides (LPO), resulting to devastating LPO explosion and widespread oxidative damage in tumor cells. Furthermore, SRF makes contribution to mass LPO accumulation by inhibiting LPO elimination. Compared to normal tissue, tumor tissue has higher levels of lactate and iron ions. Therefore, LOX/SRF@Lip shows low toxicity in normal tissues, but generates efficient inhibition on tumor proliferation and metastasis, enabling excellent and safe tumor-specific therapy. This work offers new ideas on how to magnify anticancer effect of ROS through rational nanosystem design and tumor-specific microenvironment utilization.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Reactive Oxygen Species , Hydrogen Peroxide , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment , Oxidation-Reduction , Lipid Peroxides , Sorafenib , Iron , Cell Line, Tumor
18.
Phytochemistry ; 212: 113710, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178942

ABSTRACT

Six undescribed C27-phytoecdysteroid derivatives, named superecdysones A-F, and ten known analogs were extracted from the whole plant of Dianthus superbus L. Their structures were identified by extensive spectroscopy, mass spectrometric methods, chemical transformations, chiral HPLC analysis, and the single-crystal X-ray diffraction analysis. Superecdysones A and B possess a tetrahydrofuran ring in the side chain and superecdysones C-E are rare phytoecdysones containing a (R)-lactic acid moiety, whereas superecdysone F is an uncommon B-ring-modified ecdysone. Notably, based on the variable temperature (from 333 K to 253 K) NMR experiments of superecdysone C, the missing carbon signals were visible at 253 K and assigned. The neuroinflammatory bioassay of all compounds were evaluated, and 22-acetyl-2-deoxyecdysone, 2-deoxy-20-hydroxyecdysone, 20-hydroxyecdysone, ecdysterone-22-O-benzoate, 20-hydroxyecdysone-20,22-O-R-ethylidene, and acetonide derivative 20-hydroxyecdysterone-20, 22-acetonide significantly suppressed the LPS-induced nitric oxide generation in microglia cells (BV-2), with IC50 values ranging from 6.9 to 23.0 µM. Structure-activity relationships were also discussed. Molecular docking simulations of the active compounds confirmed the possible mechanism of action against neuroinflammations. Furthermore, none compounds showed cytotoxicity against HepG2 and MCF-7. It is the first report about the occurrence and anti-neuroinflammatory activity of the phytoecdysteroids in the genus Dianthus. Our findings demonstrated that ecdysteroids may be used as potential anti-inflammatory drugs.


Subject(s)
Dianthus , Dianthus/chemistry , Ecdysterone/pharmacology , Molecular Docking Simulation , Neuroinflammatory Diseases , Ecdysteroids/pharmacology
19.
Phytomedicine ; 116: 154841, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37196513

ABSTRACT

BACKGROUND: Plantaginis Herba (Plantago asiatica L.) has the effects of clearing heat and diuresis, oozing wet and drenching. As the main active components of Plantaginis Herba (Plantago asiatica L.), plantamajoside have a wide range of antitumor activities but very low bioavailability. The process of interacting between plantamajoside and gut microbiota remains unclear. PURPOSE: To illustrate the process of interacting between plantamajoside and gut microbiota based on high-resolution mass spectrometry and targeted metabolomics methods. STUDY DESIGN AND METHODS: This experiment was divided into two parts. First, metabolites produced from plantamajoside by gut microbiota were identified and quantified based on high-resolution mass spectrometry and LC-MS/MS. Additionally, stimulation of plantamajoside on gut microbiota-derived metabolites was determined by targeted metabolomics and gas chromatography. RESULTS: We first found that plantamajoside was rapidly metabolized by gut microbiota. Then, we identified metabolites of plantamajoside by high-resolution mass spectrometry and speculated that plantamajoside was metabolized into five metabolites including calceolarioside A, dopaol glucoside, hydroxytyrosol, 3-(3-hydroxyphenyl) propionic acid (3-HPP) and caffeic acid. Among them, we quantitatively analyzed four possible metabolites based on LC‒MS/MS and found that hydroxytyrosol and 3-HPP were final products by the gut microbiota. In addition, we studied whether plantamajoside could affect the short-chain fatty acid (SCFA) and amino acid metabolites. We found that plantamajoside could inhibit the acetic acid, kynurenic acid (KYNA) and kynurenine (KN) produced by intestinal bacteria and promote the indole propionic acid (IPA) and indole formaldehyde (IALD) produced by intestinal bacteria. CONCLUSION: An interaction between plantamajoside and gut microbiota was revealed in this study. Unlike the traditional metabolic system, the special metabolic characteristics of plantamajoside in gut microbiota was found. Plantamajoside was metabolized into the following active metabolites: calceolarioside A, dopaol glucoside, hydroxytyrosol, caffeic acid and 3-HPP. Besides, plantamajoside could affect SCFA and tryptophan metabolism by gut microbiota. Especially, the exogenous metabolites hydroxytyrosol, caffeic acid and endogenous metabolites IPA may have potential association with the antitumor activity of plantamajoside.


Subject(s)
Gastrointestinal Microbiome , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Glucosides/pharmacology , Drug Interactions
20.
ACS Appl Mater Interfaces ; 15(22): 26252-26262, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37218741

ABSTRACT

Low-temperature photothermal therapy (PTT) has the advantage of causing less damage to normal tissues and has attracted great attention in recent years. However, the efficacy of low-temperature PTT is restricted by the overexpression of heat shock proteins (HSPs), specifically HSP70 and HSP90. Inhibiting the function of these HSPs is a major strategy used in the development of new cancer therapies. Herein, we designed four T780T-containing thermosensitive nanoparticles to interrupt the energy supply for HSP expression using their TPP-based mitochondrial targeting action. The reversal behavior of the nanoparticles on the gambogic acid (GA)-induced compensatory increase of HSP70 was investigated in vitro by Western blot and in vivo by immunohistochemistry. The in vivo anticancer efficacy of the low-temperature PTT based on these thermosensitive nanoparticles was also systematically examined. The design proposes for the first time to utilize and elucidate the mechanism of the mitochondrial targeting of T780T-containing NPs in synergy with the HSP90 inhibition of GA to achieve an effective low-temperature PTT. This work not only provides a novel pathway for the dual inhibition of HSP70 and HSP90 but also opens up a new approach for low-temperature PTT of tumors.


Subject(s)
Nanoparticles , Neoplasms , Humans , Photothermal Therapy , Temperature , Cold Temperature , Neoplasms/therapy , Mitochondria , Phototherapy , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL