Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Country/Region as subject
Language
Affiliation country
Publication year range
1.
Braz J Microbiol ; 46(3): 815-23, 2015.
Article in English | MEDLINE | ID: mdl-26413065

ABSTRACT

Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce ß-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking.


Subject(s)
Ascomycota/enzymology , Cryptococcus/enzymology , Polygalacturonase/metabolism , Rhodotorula/enzymology , Vitis/microbiology , Wine/microbiology , Argentina , Ascomycota/isolation & purification , Cryptococcus/isolation & purification , Fermentation/physiology , Molecular Sequence Data , Molecular Typing , Mycological Typing Techniques , Pectins/metabolism , Polymerase Chain Reaction , RNA, Ribosomal/genetics , Rhodotorula/isolation & purification
2.
Braz. j. microbiol ; Braz. j. microbiol;46(3): 815-823, July-Sept. 2015. tab, ilus
Article in English | LILACS | ID: lil-755801

ABSTRACT

Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking.

.


Subject(s)
Ascomycota/enzymology , Cryptococcus/enzymology , Polygalacturonase/metabolism , Rhodotorula/enzymology , Vitis/microbiology , Wine/microbiology , Argentina , Ascomycota/isolation & purification , Cryptococcus/isolation & purification , Fermentation/physiology , Molecular Sequence Data , Molecular Typing , Mycological Typing Techniques , Polymerase Chain Reaction , Pectins/metabolism , RNA, Ribosomal/genetics , Rhodotorula/isolation & purification
3.
J Basic Microbiol ; 54(8): 835-42, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23686851

ABSTRACT

In this study indigenous yeasts associated with wineries, grapes and Malbec fermented must from San Rafael viticulture region (Argentina) were isolated to select pectinolytic strains for their potential use in enology. Pectinolytic yeasts were identified by physiological and molecular methods. Among 78 isolates, only nine were able to produce extracellular pectinases. Six isolated from berry surface were identified as Aureobasidium pullulans and the remaining isolates, recovered from wineries, belonged to Saccharomyces cerevisiae and Filobasidium capsuligenum species. Pectinase production was evaluated under vinification-related conditions: pH 3.5, 12 and 28 °C. A. pullulans U-12 produced the highest pectinolytic activity at low temperature (1.16 U ml(-1) ), while F. capsuligenum strains showed good activity at 12 and 28 °C (0.77 and 1.15 U ml(-1) , respectively) being this study the first report on the capacity of this species to produce pectinases. The pectinolytic activity of F. capsuligenum B-13 showed an optimum at pH 4.5 and two peaks at 20 and 50 °C. The enzyme half-life was 2 h at 40 °C and retained 65% of its activity at 40 °C after 1 h of incubation. This pectinolytic system displayed remarkable activity at pH and temperatures found in vinification, suggesting a potential candidate for applying to wine-making.


Subject(s)
Basidiomycota/enzymology , Polygalacturonase/biosynthesis , Saccharomyces cerevisiae/enzymology , Wine/microbiology , Argentina , Basidiomycota/genetics , Basidiomycota/isolation & purification , DNA, Intergenic/genetics , Fermentation , Molecular Sequence Data , Mycological Typing Techniques , Pectins/metabolism , RNA, Ribosomal/genetics , Saccharomyces cerevisiae/genetics , Vitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL