Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Cancer Immunol Res ; 11(12): 1578-1588, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37902610

ABSTRACT

Cancer-related inflammation is a crucial component of the tumor microenvironment (TME). Complement activation occurs in cancer and supports the development of an inflammatory microenvironment. Complement has traditionally been considered a mechanism of immune resistance against cancer, and its activation is known to contribute to the cytolytic effects of antibody-based immunotherapeutic treatments. However, several studies have recently revealed that complement activation may exert protumoral functions by sustaining cancer-related inflammation and immunosuppression through different molecular mechanisms, targeting both the TME and cancer cells. These new discoveries have revealed that complement manipulation can be considered a new strategy for cancer therapies. Here we summarize our current understanding of the mechanisms by which the different elements of the complement system exert antitumor or protumor functions, both in preclinical studies and in human tumorigenesis. Complement components can serve as disease biomarkers for cancer stratification and prognosis and be exploited for tumor treatment.


Subject(s)
Neoplasms , Yin-Yang , Humans , Complement System Proteins , Complement Activation , Inflammation , Tumor Microenvironment
2.
Gastroenterology ; 158(6): 1667-1681.e12, 2020 05.
Article in English | MEDLINE | ID: mdl-32032584

ABSTRACT

BACKGROUND & AIMS: Celiac disease could be treated, and potentially cured, by restoring T-cell tolerance to gliadin. We investigated the safety and efficacy of negatively charged 500-nm poly(lactide-co-glycolide) nanoparticles encapsulating gliadin protein (TIMP-GLIA) in 3 mouse models of celiac disease. Uptake of these nanoparticles by antigen-presenting cells was shown to induce immune tolerance in other animal models of autoimmune disease. METHODS: We performed studies with C57BL/6; RAG1-/- (C57BL/6); and HLA-DQ8, huCD4 transgenic Ab0 NOD mice. Mice were given 1 or 2 tail-vein injections of TIMP-GLIA or control nanoparticles. Some mice were given intradermal injections of gliadin in complete Freund's adjuvant (immunization) or of soluble gliadin or ovalbumin (ear challenge). RAG-/- mice were given intraperitoneal injections of CD4+CD62L-CD44hi T cells from gliadin-immunized C57BL/6 mice and were fed with an AIN-76A-based diet containing wheat gluten (oral challenge) or without gluten. Spleen or lymph node cells were analyzed in proliferation and cytokine secretion assays or by flow cytometry, RNA sequencing, or real-time quantitative polymerase chain reaction. Serum samples were analyzed by gliadin antibody enzyme-linked immunosorbent assay, and intestinal tissues were analyzed by histology. Human peripheral blood mononuclear cells, or immature dendritic cells derived from human peripheral blood mononuclear cells, were cultured in medium containing TIMP-GLIA, anti-CD3 antibody, or lipopolysaccharide (controls) and analyzed in proliferation and cytokine secretion assays or by flow cytometry. Whole blood or plasma from healthy volunteers was incubated with TIMP-GLIA, and hemolysis, platelet activation and aggregation, and complement activation or coagulation were analyzed. RESULTS: TIMP-GLIA did not increase markers of maturation on cultured human dendritic cells or induce activation of T cells from patients with active or treated celiac disease. In the delayed-type hypersensitivity (model 1), the HLA-DQ8 transgenic (model 2), and the gliadin memory T-cell enteropathy (model 3) models of celiac disease, intravenous injections of TIMP-GLIA significantly decreased gliadin-specific T-cell proliferation (in models 1 and 2), inflammatory cytokine secretion (in models 1, 2, and 3), circulating gliadin-specific IgG/IgG2c (in models 1 and 2), ear swelling (in model 1), gluten-dependent enteropathy (in model 3), and body weight loss (in model 3). In model 1, the effects were shown to be dose dependent. Splenocytes from HLA-DQ8 transgenic mice given TIMP-GLIA nanoparticles, but not control nanoparticles, had increased levels of FOXP3 and gene expression signatures associated with tolerance induction. CONCLUSIONS: In mice with gliadin sensitivity, injection of TIMP-GLIA nanoparticles induced unresponsiveness to gliadin and reduced markers of inflammation and enteropathy. This strategy might be developed for the treatment of celiac disease.


Subject(s)
Celiac Disease/drug therapy , Gliadin/administration & dosage , Immune Tolerance/drug effects , Nanoparticles/administration & dosage , Administration, Intravenous , Animals , CD4-Positive T-Lymphocytes , Celiac Disease/blood , Celiac Disease/immunology , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Gliadin/immunology , Gliadin/toxicity , Glutens/administration & dosage , Glutens/immunology , HLA-DQ Antigens/genetics , HLA-DQ Antigens/immunology , Humans , Intestinal Mucosa , Leukocytes, Mononuclear , Mice , Mice, Transgenic , Nanoparticles/chemistry , Nanoparticles/toxicity , Polyglactin 910/chemistry , Primary Cell Culture , Toxicity Tests, Acute
3.
Prog Neurobiol ; 70(6): 463-72, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14568360

ABSTRACT

The spectrum of inflammatory diseases is nowadays considered to include diverse diseases of the central nervous system (CNS). Current evidence suggests that syndromes such as Alzheimer's disease (AD) have important inflammatory and immune components and may be amenable to treatment by anti-inflammatory and immunotherapeutic approaches. Compelling evidence has been reported that complement activation occurs in the brain with Alzheimer's disease, and that this contributes to the development of a local inflammatory state that is correlated with cognitive dysfunction. The complement system is a critical element of the innate immune system recognizing and killing, or targeting for destruction, otherwise pathogenic organisms. In addition to triggering the generation of a membranolytic complex, complement proteins interact with cell surface receptors to promote a local inflammatory response that contributes to the protection and healing of the host. Complement activation causes inflammation and cell damage, yet it is an essential component in trying to eliminate cell debris and potentially toxic protein aggregates. It is the balance of these seemingly competing events--the "Yin" and the "Yang"--that influences the ultimate state of neuronal function. Knowledge of the unique molecular interactions that occur in the development of Alzheimer's disease, the functional consequences of those interactions, and the proportional contribution of each element to this disorder, should facilitate the design of effective therapeutic strategies for this disease.


Subject(s)
Alzheimer Disease/immunology , Complement Activation , Complement System Proteins/immunology , Alzheimer Disease/metabolism , Animals , Complement C1/immunology , Complement C1 Inactivator Proteins/immunology , Complement C3/immunology , Complement C5/immunology , Complement System Proteins/metabolism , Disease Models, Animal , Heparin/immunology , Humans , Inflammation/immunology , Proteoglycans/immunology , Receptors, Complement/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL