Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Pharm ; 635: 122654, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36720449

ABSTRACT

A major challenge in nanomedicine is designing nanoplatforms (NPFs) to selectively target abnormal cells to ensure early diagnosis and targeted therapy. Among developed NPFs, iron oxide nanoparticles (IONPs) are good MRI contrast agents and can be used for therapy by hyperthermia and as radio-sensitizing agents. Active targeting is a promising method for selective IONPs accumulation in cancer tissues and is generally performed by using targeting ligands (TL). Here, a TL specific for the epidermal growth factor receptor (EGFR) is bound to the surface of dendronized IONPs to produce nanostructures able to specifically recognize EGFR-positive FaDu and 93-Vu head and neck cancer cell lines. Several parameters were optimized to ensure a high coupling yield and to adequately quantify the amount of TL per nanoparticle. Nanostructures with variable amounts of TL on the surface were produced and evaluated for their potential to specifically target and be thereafter internalized by cells. Compared to the bare NPs, the presence of the TL at the surface was shown to be effective to enhance their internalization and to play a role in the total amount of iron present per cell.


Subject(s)
Head and Neck Neoplasms , Hyperthermia, Induced , Magnetite Nanoparticles , Nanoparticles , Humans , Ligands , Epidermal Growth Factor , ErbB Receptors/metabolism , Nanoparticles/chemistry , Head and Neck Neoplasms/drug therapy , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry
2.
Biomater Sci ; 10(14): 3993-4007, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35723414

ABSTRACT

Primary bone cancers commonly involve surgery to remove the malignant tumor, complemented with a postoperative treatment to prevent cancer resurgence. Studies on magnetic hyperthermia, used as a single treatment or in synergy with chemo- or radiotherapy, have shown remarkable success in the past few decades. Multifunctional biomaterials with bone healing ability coupled with hyperthermia property could thus be of great interest to repair critical bone defects resulting from tumor resection. For this purpose, we designed superparamagnetic and bioactive nanoparticles (NPs) based on iron oxide cores (γ-Fe2O3) encapsulated in a bioactive glass (SiO2-CaO) shell. Nanometric heterostructures (122 ± 12 nm) were obtained through a two-step process: co-precipitation of 16 nm sized iron oxide NPs, followed by the growth of a bioactive glass shell via a modified Stöber method. Their bioactivity was confirmed by hydroxyapatite growth in simulated body fluid, and cytotoxicity assays showed they induced no significant death of human mesenchymal stem cells after 7 days. Calorimetric measurements were carried out under a wide range of alternating magnetic field amplitudes and frequencies, considering clinically relevant parameters, and some were made in viscous medium (agar) to mimic the implantation conditions. The experimental specific loss power was predictable with respect to the Linear Response Theory, and showed a maximal value of 767 ± 77 W gFe-1 (769 kHz, 23.9 kA m-1 in water). An interesting value of 166 ± 24 W gFe-1 was obtained under clinically relevant conditions (157 kHz, 23.9 kA m-1) for the heterostructures immobilized in agar. The good biocompatibility, bioactivity and heating ability suggest that these γ-Fe2O3@SiO2-CaO NPs are a promising biomaterial to be used as it is or included in a scaffold to heal bone defects resulting from bone tumor resection.


Subject(s)
Bone Neoplasms , Hyperthermia, Induced , Osteosarcoma , Agar , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Neoplasms/therapy , Glass/chemistry , Humans , Magnetic Phenomena , Silicon Dioxide
3.
Small ; 18(20): e2200414, 2022 05.
Article in English | MEDLINE | ID: mdl-35426247

ABSTRACT

Thermal decomposition is a very efficient synthesis strategy to obtain nanosized metal oxides with controlled structures and properties. For the iron oxide nanoparticle synthesis, it allows an easy tuning of the nanoparticle's size, shape, and composition, which is often explained by the LaMer theory involving a clear separation between nucleation and growth steps. Here, the events before the nucleation of iron oxide nanocrystals are investigated by combining different complementary in situ characterization techniques. These characterizations are carried out not only on powdered iron stearate precursors but also on a preheated liquid reaction mixture. They reveal a new nucleation mechanism for the thermal decomposition method: instead of a homogeneous nucleation, the nucleation occurs within vesicle-like-nanoreactors confining the reactants. The different steps are: 1) the melting and coalescence of iron stearate particles, leading to "droplet-shaped nanostructures" acting as nanoreactors; 2) the formation of a hitherto unobserved iron stearate crystalline phase within the nucleation temperature range, simultaneously with stearate chains loss and Fe(III) to Fe(II) reduction; 3) the formation of iron oxide nuclei inside the nanoreactors, which are then ejected from them. This mechanism paves the way toward a better mastering of the metal oxide nanoparticles synthesis and the control of their properties.


Subject(s)
Metal Nanoparticles , Oxides , Culture Media , Ferric Compounds/chemistry , Iron , Metal Nanoparticles/chemistry , Oxides/chemistry , Stearates
4.
ACS Appl Mater Interfaces ; 12(42): 47820-47830, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32990423

ABSTRACT

The past few decades have seen the development of new bone cancer therapies, triggered by the discovery of new biomaterials. When the tumoral area is small and accessible, the common clinical treatment implies the tumor mass removal followed by bone reconstruction or consolidation with a bioceramic or a metallic scaffold. Even though the treatment also involves chemotherapy or radiotherapy, resurgence of cancer cells remains possible. We have thus designed a new kind of heterostructured nanobiomaterial, composed of SiO2-CaO bioactive glass as the shell and superparamagnetic γ-Fe2O3 iron oxide as the core in order to combine the benefits of bone repair thanks to the glass bioactivity and cancer cell destruction through magnetic hyperthermia. These multifunctional core-shell nanoparticles (NPs) have been obtained using a two-stage procedure, involving the coprecipitation of 11 nm sized iron oxide NPs followed by their encapsulation inside a bioactive glass shell by sol-gel chemistry. The as-produced spherical multicore-shell NPs show a narrow size distribution of 73 ± 7 nm. Magnetothermal loss measurements by calorimetry under an alternating magnetic field and in vitro bioactivity assessment performed in simulated body fluid showed that these heterostructures exhibit a good heating capacity and a fast mineralization process (hydroxyapatite forming ability). In addition, their in vitro cytocompatibility, evaluated in the presence of human mesenchymal stem cells during 3 and 7 days, has been demonstrated. These first findings suggest that γ-Fe2O3@SiO2-CaO heterostructures are a promising biomaterial to fill bone defects resulting from bone tumor resection, as they have the ability to both repair bone tissue and act as thermoseeds for cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Biocompatible Materials/therapeutic use , Bone Neoplasms/drug therapy , Mesenchymal Stem Cells/drug effects , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Biocompatible Materials/chemistry , Calcium Compounds/chemistry , Cells, Cultured , Ferrosoferric Oxide/chemistry , Humans , Oxides/chemistry , Particle Size , Silicon Dioxide/chemistry , Surface Properties
5.
ACS Appl Mater Interfaces ; 11(34): 30610-30620, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31359758

ABSTRACT

This study reports on the development of thermoresponsive core/shell magnetic nanoparticles (MNPs) based on an iron oxide core and a thermoresponsive copolymer shell composed of 2-(2-methoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol)methacrylate (OEGMA) moieties. These smart nano-objects combine the magnetic properties of the core and the drug carrier properties of the polymeric shell. Loading the anticancer drug doxorubicin (DOX) in the thermoresponsive MNPs via supramolecular interactions provides advanced features to the delivery of DOX with spatial and temporal controls. The so coated iron oxide MNPs exhibit superparamagnetic behavior with a saturation magnetization of around 30 emu g-1. Drug release experiments confirmed that only a small amount of DOX was released at room temperature, while almost 100% drug release was achieved after 52 h at 42 °C with Fe3-δO4@P(MEO2MA60OEGMA40), which grafted polymer chains displaying a low critical solution temperature of 41 °C. Moreover, the MNPs exhibit magnetic hyperthermia properties as shown by specific absorption rate measurements. Finally, the cytotoxicity of the core/shell MNPs toward human ovary cancer SKOV-3 cells was tested. The results showed that the polymer-capped MNPs exhibited almost no toxicity at concentrations up to 12 µg mL-1, whereas when loaded with DOX, an increase in cytotoxicity and a decrease of SKOV-3 cell viability were observed. From these results, we conclude that these smart superparamagnetic nanocarriers with stealth properties are able to deliver drugs to tumor and are promising for applications in multimodal cancer therapy.


Subject(s)
Doxorubicin , Drug Carriers , Hot Temperature , Hyperthermia, Induced , Magnetite Nanoparticles , Neoplasms , Cell Line, Tumor , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy
6.
ACS Appl Mater Interfaces ; 11(1): 403-416, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30541280

ABSTRACT

Noninvasive diagnostic by imaging combined with a contrast agent (CA) is by now the most used technique to get insight into human bodies. X-ray and magnetic resonance imaging (MRI) are widely used technologies providing complementary results. Nowadays, it seems clear that bimodal CAs could be an emerging approach to increase the patient compliance, accessing different imaging modalities with a single CA injection. Owing to versatile designs, targeting properties, and high payload capacity, nanocarriers are considered as a viable solution to reach this goal. In this study, we investigated efficient superparamagnetic iron oxide nanoparticle (SPION)-loaded iodinated nano-emulsions (NEs) as dual modal injectable CAs for X-ray imaging and MRI. The strength of this new CA lies not only in its dual modal contrasting properties and biocompatibility, but also in the simplicity of the nanoparticulate assembling: iodinated oily core was synthesized by the triiodo-benzene group grafting on vitamin E (41.7% of iodine) via esterification, and SPIONs were produced by thermal decomposition during 2, 4, and 6 h to generate SPIONs with different morphologies and magnetic properties. SPIONs with most anisotropic shape and characterized by the highest r2/ r1 ratio once encapsulated into iodinated NE were used for animal experimentation. The in vivo investigation showed an excellent contrast modification because of the presence of the selected NEs, for both imaging techniques explored, that is, MRI and X-ray imaging. This work provides the description and in vivo application of a simple and efficient nanoparticulate system capable of enhancing contrast for both preclinical imaging modalities, MRI, and computed tomography.


Subject(s)
Contrast Media , Iodine , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles , Tomography, X-Ray Computed/methods , Animals , Contrast Media/chemistry , Contrast Media/pharmacokinetics , Contrast Media/pharmacology , Emulsions , HeLa Cells , Humans , Iodine/chemistry , Iodine/pharmacokinetics , Iodine/pharmacology , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Mice
7.
Chemistry ; 24(18): 4662-4670, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29369435

ABSTRACT

One key challenge in the fields of nanomedicine and tissue engineering is the design of theranostic nanoplatforms able to monitor their therapeutic effect by imaging. Among current developed nano-objects, carbon nanotubes (CNTs) were found suitable to combine imaging, photothermal therapy, and to be loaded with hydrophobic drugs. However, a main problem is their resulting low hydrophilicity. To face this problem, an innovative method is developed here, which consists in loading the surface of carbon nanotubes (CNTs) with drugs followed by a protein coating around them. The originality of this method relies on first covering CNTs with a sacrificial template mesoporous silica (MS) shell grafted with isobutyramide (IBAM) binders on which a protein nanofilm is strongly adhered through IBAM-mediated physical cross-linking. This concept is first demonstrated without drugs, and is further improved with the suitable loading of hydrophobic drugs, curcumin (CUR) and camptothecin (CPT), which are retained between the CNTs and human serum albumin (HSA) layer. Such novel nanocomposites with favorable photothermal properties are very promising for theranostic systems, drug delivery, and phototherapy applications.


Subject(s)
Nanotubes, Carbon/chemistry , Proteins/chemistry , Silicon Dioxide/chemistry , Amides/chemistry , Camptothecin/chemistry , Curcumin/chemistry , Drug Delivery Systems , Humans , Nanocomposites/chemistry , Nanomedicine , Phototherapy/methods , Serum Albumin, Human/metabolism , Theranostic Nanomedicine
8.
Biochim Biophys Acta Gen Subj ; 1861(6): 1617-1641, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28238734

ABSTRACT

The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Magnetic Fields , Magnetics/methods , Nanomedicine/methods , Nanoparticles/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Drug Compounding , Drug Liberation , Energy Transfer , Humans , Hyperthermia, Induced/methods , Kinetics , Neoplasms/drug therapy , Neoplasms/pathology , Solubility
9.
Nanomedicine (Lond) ; 11(14): 1889-910, 2016 07.
Article in English | MEDLINE | ID: mdl-27389703

ABSTRACT

Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance. On this basis, this review aims to cover the rational design of iron oxide nanoparticles to be used as MRI contrast agents or heating mediators in magnetic hyperthermia, and reviews the state of the art of their use as nanomedicine tools.


Subject(s)
Contrast Media/chemistry , Contrast Media/therapeutic use , Hyperthermia, Induced/methods , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL