Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nutrients ; 16(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276538

ABSTRACT

Exposure to B[a]P, the most characterized polycyclic aromatic hydrocarbon, significantly increases breast cancer risk. Our lab has previously reported that diallyl trisulfide (DATS), a garlic organosulfur compound (OSC) with chemopreventive and cell cycle arrest properties, reduces lipid peroxides and DNA damage in normal breast epithelial (MCF-10A) cells. In this study, we evaluated the ability of DATS to block the B[a]P-induced initiation of carcinogenesis in MCF-10A cells by examining changes in proliferation, clonogenic formation, reactive oxygen species (ROS) formation, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, and protein expression of ARNT/HIF-1ß, CYP1A1, and DNA POLß. The study results indicate that B[a]P increased proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing the protein expression of ARNT/HIF-1ß and CYP1A1 compared to the control. Conversely, DATS/B[a]P co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, and 8-OHdG levels compared to B[a]P alone. Treatment with DATS significantly inhibited (p < 0.0001) AhR expression, implicated in the development and progression of breast cancer. The CoTx also attenuated all the above-mentioned B[a]P-induced changes in protein expression. At the same time, it increased DNA POLß protein expression, which indicates increased DNA repair, thus causing a chemopreventive effect. These results provide evidence for the chemopreventive effects of DATS in breast cancer prevention.


Subject(s)
Allyl Compounds , Anticarcinogenic Agents , Breast Neoplasms , Garlic , Precancerous Conditions , Humans , Female , Garlic/metabolism , Antioxidants/pharmacology , Benzo(a)pyrene/toxicity , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Apoptosis , Sulfides/pharmacology , Epithelial Cells/metabolism , Anticarcinogenic Agents/pharmacology , DNA Repair , Breast Neoplasms/chemically induced , Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , DNA
2.
J Neuroimmunol ; 313: 129-137, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28950995

ABSTRACT

Activated microglial cells produce the pro-inflammatory mediators such as nitric oxide (NO) and cytokines. The excessive release of these mediators can lead to neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Inhibition of the release of these pro-inflammatory molecules may prevent or halt the progression of these diseases. Plumbagin (PL), a naphthoquinone compound in the roots of the traditional medicinal plant Plumbago zeylanica L., showed anti-inflammatory effects on macrophages. However, PL effects on activated microglia remain unknown. In the present study, PL has been examined for its anti-inflammatory effect on LPS - activated microglial BV-2 cells. In this study, NO and iNOS expression were investigated in BV-2 microglial cells in the presence of PL or the selective iNOS inhibitor L-N6-(1-iminoethyl) lysine (L-NIL). The results obtained indicate that PL was >30-fold potent than L-NIL in inhibiting NO production with an IC50 of 0.39µM. Our immunofluorescence study confirmed the ability of PL to significantly inhibit iNOS expression in the activated microglia. Furthermore, the extracellular microglial pro-inflammatory cytokine expression in the presence of 2µM of PL was detected, quantified, and validated using cytokine antibody protein arrays and quantitative ELISA. The results obtained showed that PL significantly downregulated the expression of many cytokines including IL-1α, G-CSF, IL-12 p40/p70, MCP-5, MCP-1, and IL-6. In conclusion, PL potency in attenuating multiple pro-inflammatory agents indicates its potential to be used for neurodegenerative diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Gene Expression Regulation/drug effects , Microglia/drug effects , Naphthoquinones/pharmacology , Animals , Cell Line, Transformed , Dose-Response Relationship, Drug , Lipopolysaccharides/toxicity , Lysine/analogs & derivatives , Lysine/pharmacology , Mice , Microglia/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism
3.
European J Med Plants ; 15(1)2016 May.
Article in English | MEDLINE | ID: mdl-27341283

ABSTRACT

AIMS: Monoamine oxidase-B inhibitors (MAO-BIs) are used for the initial therapy of Parkinson's disease. Also, MAO-BIs have shown to be effective neuroprotective agents in several neurodegenerative diseases. However, some concerns exist regarding the long-term use of these compounds. Meanwhile, natural compounds showed potential MAO-B selective inhibitions. To date, few selective natural MAO-BIs have been identified. Therefore, the current study is designed to identify plants with potent and specific MAO-B inhibition. STUDY DESIGN: In this work, we utilized high throughput screening to evaluate the different plants ethanolic extract for their effectiveness to inhibit recombinant human (h)MAO-A and hMAO-B and to determine the relative selectivity of the top MAO-BI. METHODOLOGY: Recombinant human isozymes were verified by Western blotting, and the 155 plants were screened. A continuous fluorometric screening assay was performed followed by two separate hMAO-A and hMAO-B microtiter screenings and IC50 determinations for the top extracts. RESULTS: In the screened plants, 9% of the extracts showed more than 1.5-fold relative inhibition of hMAO-B (RIB) and another 9% showed more than 1.5-fold relative inhibition of hMAO-A. The top extracts with the most potent RIBs were Psoralea corylifolia seeds, Phellodendron amurense bark, Glycyrrhiza uralensis roots, and Ferula assafoetida roots, with the highest RIB of 5.9-fold. Furthermore, extensive maceration of the promising extracts led to increase inhibitory effects with a preserved RIB as confirmed with luminescence assay. The top four extracts hMAO-BIs were equally potent (IC50= 1.3 to 3.8 µg/mL) with highly significant relative selectivities to inhibit hMAO-B (4.1- to 13.4-fold). CONCLUSION: The obtained results indicate that Psoralea corylifolia seeds, Ferula assafoetida, Glycyrrhiza uralensis roots, and Phellodendron amurense ethanolic extracts have selective inhibitions for human MAO-B. Investigating these plant extracts as natural resources for novel selective MAO-BIs may lead to the development of molecules that can be used in the therapeutic management of neurodegenerative diseases including Parkinson's disease.

4.
Article in English | MEDLINE | ID: mdl-27118978

ABSTRACT

Monoamine oxidases inhibitors (MAOIs) are effective therapeutic drugs for managing Parkinson's disease (PD) and depression. However, their irreversibility may lead to rare but serious side effects. As finding safer and reversible MAOIs is our target, we characterized the recombinant human (h) MAO-A and MAO-B inhibition potentials of two common natural isoflavones, genistein (GST) and daidzein (DZ) using luminescence assay. The results obtained showed that DZ exhibits partial to no inhibition of the isozymes examined while GST inhibited hMAO-B (IC50 of 6.81 µM), and its hMAO-A inhibition was more potent than the standard deprenyl. Furthermore, the reversibility, mode of inhibition kinetics, and tyramine oxidation of GST were examined. GST was a time-independent reversible and competitive hMAO-A and hMAO-B inhibitor with a lower K i of hMAO-B (1.45 µM) than hMAO-A (4.31 µM). GST also inhibited hMAO-B tyramine oxidation and hydrogen peroxide production more than hMAO-A. Docking studies conducted indicated that the GST reversibility and hMAO-B selectivity of inhibition may relate to C5-OH effects on its orientation and its interactions with the threonine 201 residue of the active site. It was concluded from this study that the natural product GST has competitive and reversible MAOs inhibitions and may be recommended for further investigations as a useful therapeutic agent for Parkinson's disease.

5.
Article in English | MEDLINE | ID: mdl-26557867

ABSTRACT

Monoamine oxidase B inhibitors (MAO-BIs) are used in the early management of Parkinson's disease (PD). Long-term suspected side effects of MAO-B classical inhibitors established the need for safer alternative therapeutic agents. In our study, the flavanone bavachinin (BNN) and its analog bavachin (BVN) found in the seeds of Psoralea corylifolia L. ethanolic extract (PCSEE) were investigated for their human MAO-A and MAO-B (hMAO-A and hMAO-B) inhibition. Both PCSEE and BNN effectively reduced hMAO-B activity more than hMAO-A while BVN had activating effects. BNN showed selective hMAO-B inhibition (IC50 ~ 8.82 µM) more than hMAO-A (IC502009;~ 189.28 µM). BNN in the crude extract was determined by HPLC, also validated by TLC showing a yield of 0.21% PCSEE dry weight. BNN competitively inhibited hMAO-A and hMAO-B, with a lower hMAO-B K i than hMAO-A K i by 10.33-fold, and reduced hMAO-B K m /V max efficiency ratio to be comparable to the standard selegiline. Molecular docking examination of BNN and BVN predicted an indirect role of BNN C7-methoxy group for its higher affinity, selectivity, and reversibility as an MAO-BI. These findings suggest that BNN, which is known to be a potent PPAR-γ agonist, is a selective and competitive hMAO-B inhibitor and could be used in the management of PD.

SELECTION OF CITATIONS
SEARCH DETAIL