Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nature ; 626(7998): 341-346, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297117

ABSTRACT

The Middle to Upper Palaeolithic transition in Europe is associated with the regional disappearance of Neanderthals and the spread of Homo sapiens. Late Neanderthals persisted in western Europe several millennia after the occurrence of H. sapiens in eastern Europe1. Local hybridization between the two groups occurred2, but not on all occasions3. Archaeological evidence also indicates the presence of several technocomplexes during this transition, complicating our understanding and the association of behavioural adaptations with specific hominin groups4. One such technocomplex for which the makers are unknown is the Lincombian-Ranisian-Jerzmanowician (LRJ), which has been described in northwestern and central Europe5-8. Here we present the morphological and proteomic taxonomic identification, mitochondrial DNA analysis and direct radiocarbon dating of human remains directly associated with an LRJ assemblage at the site Ilsenhöhle in Ranis (Germany). These human remains are among the earliest directly dated Upper Palaeolithic H. sapiens remains in Eurasia. We show that early H. sapiens associated with the LRJ were present in central and northwestern Europe long before the extinction of late Neanderthals in southwestern Europe. Our results strengthen the notion of a patchwork of distinct human populations and technocomplexes present in Europe during this transitional period.


Subject(s)
Human Migration , Animals , Humans , Body Remains/metabolism , DNA, Ancient/analysis , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Europe , Extinction, Biological , Fossils , Germany , History, Ancient , Neanderthals/classification , Neanderthals/genetics , Neanderthals/metabolism , Proteomics , Radiometric Dating , Human Migration/history , Time Factors
2.
Nature ; 618(7964): 328-332, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37138083

ABSTRACT

Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.


Subject(s)
Bone and Bones , DNA, Ancient , Tooth , Animals , Female , Humans , Archaeology/methods , Bone and Bones/chemistry , Deer/genetics , DNA, Ancient/analysis , DNA, Ancient/isolation & purification , DNA, Mitochondrial/analysis , DNA, Mitochondrial/isolation & purification , History, Ancient , Siberia , Tooth/chemistry , Caves , Russia
3.
Nature ; 592(7853): 253-257, 2021 04.
Article in English | MEDLINE | ID: mdl-33828320

ABSTRACT

Modern humans appeared in Europe by at least 45,000 years ago1-5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common.


Subject(s)
DNA, Ancient/analysis , Genome, Human/genetics , Neanderthals/genetics , Alleles , Americas/ethnology , Animals , Archaeology , Bulgaria/ethnology , Caves , Asia, Eastern/ethnology , Female , History, Ancient , Humans , Male , Phylogeny
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443177

ABSTRACT

Humans reached the Mariana Islands in the western Pacific by ∼3,500 y ago, contemporaneous with or even earlier than the initial peopling of Polynesia. They crossed more than 2,000 km of open ocean to get there, whereas voyages of similar length did not occur anywhere else until more than 2,000 y later. Yet, the settlement of Polynesia has received far more attention than the settlement of the Marianas. There is uncertainty over both the origin of the first colonizers of the Marianas (with different lines of evidence suggesting variously the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago) as well as what, if any, relationship they might have had with the first colonizers of Polynesia. To address these questions, we obtained ancient DNA data from two skeletons from the Ritidian Beach Cave Site in northern Guam, dating to ∼2,200 y ago. Analyses of complete mitochondrial DNA genome sequences and genome-wide SNP data strongly support ancestry from the Philippines, in agreement with some interpretations of the linguistic and archaeological evidence, but in contradiction to results based on computer simulations of sea voyaging. We also find a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population, and raising the possibility that the Marianas played a role in the eventual settlement of Polynesia.


Subject(s)
Chromosomes, Human, Y/genetics , DNA, Ancient/analysis , DNA, Mitochondrial/genetics , Human Migration/history , Native Hawaiian or Other Pacific Islander/genetics , Archaeology , Computer Simulation , Genome , Guam , Haplotypes , History, Ancient , Humans , Indonesia , Micronesia , New Guinea , Philippines , Phylogeny , Polymorphism, Single Nucleotide , Polynesia , Vanuatu
5.
Sci Rep ; 10(1): 21230, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33299013

ABSTRACT

The origin of funerary practices has important implications for the emergence of so-called modern cognitive capacities and behaviour. We provide new multidisciplinary information on the archaeological context of the La Ferrassie 8 Neandertal skeleton (grand abri of La Ferrassie, Dordogne, France), including geochronological data -14C and OSL-, ZooMS and ancient DNA data, geological and stratigraphic information from the surrounding context, complete taphonomic study of the skeleton and associated remains, spatial information from the 1968-1973 excavations, and new (2014) fieldwork data. Our results show that a pit was dug in a sterile sediment layer and the corpse of a two-year-old child was laid there. A hominin bone from this context, identified through Zooarchaeology by Mass Spectrometry (ZooMS) and associated with Neandertal based on its mitochondrial DNA, yielded a direct 14C age of 41.7-40.8 ka cal BP (95%), younger than the 14C dates of the overlying archaeopaleontological layers and the OSL age of the surrounding sediment. This age makes the bone one of the most recent directly dated Neandertals. It is consistent with the age range for the Châtelperronian in the site and in this region and represents the third association of Neandertal taxa to Initial Upper Palaeolithic lithic technocomplex in Western Europe. A detailed multidisciplinary approach, as presented here, is essential to advance understanding of Neandertal behavior, including funerary practices.


Subject(s)
Burial/history , Burial/methods , Neanderthals/psychology , Animals , Archaeology , Bone and Bones/metabolism , Child, Preschool , DNA, Mitochondrial/genetics , Fossils , France , Geology , History, Ancient , Hominidae , Humans , Mass Spectrometry/methods , Paleontology
6.
Nature ; 581(7808): 299-302, 2020 05.
Article in English | MEDLINE | ID: mdl-32433609

ABSTRACT

The Middle to Upper Palaeolithic transition in Europe witnessed the replacement and partial absorption of local Neanderthal populations by Homo sapiens populations of African origin1. However, this process probably varied across regions and its details remain largely unknown. In particular, the duration of chronological overlap between the two groups is much debated, as are the implications of this overlap for the nature of the biological and cultural interactions between Neanderthals and H. sapiens. Here we report the discovery and direct dating of human remains found in association with Initial Upper Palaeolithic artefacts2, from excavations at Bacho Kiro Cave (Bulgaria). Morphological analysis of a tooth and mitochondrial DNA from several hominin bone fragments, identified through proteomic screening, assign these finds to H. sapiens and link the expansion of Initial Upper Palaeolithic technologies with the spread of H. sapiens into the mid-latitudes of Eurasia before 45 thousand years ago3. The excavations yielded a wealth of bone artefacts, including pendants manufactured from cave bear teeth that are reminiscent of those later produced by the last Neanderthals of western Europe4-6. These finds are consistent with models based on the arrival of multiple waves of H. sapiens into Europe coming into contact with declining Neanderthal populations7,8.


Subject(s)
Fossils , Human Migration/history , Animals , Asia , Bone and Bones/metabolism , Bulgaria , Caves , DNA, Ancient/isolation & purification , DNA, Mitochondrial/genetics , DNA, Mitochondrial/isolation & purification , Europe , History, Ancient , Humans , Neanderthals/genetics , Phylogeny , Tool Use Behavior , Tooth/anatomy & histology , Tooth/metabolism
7.
Proc Natl Acad Sci U S A ; 116(31): 15610-15615, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31308224

ABSTRACT

The Forbes' Quarry and Devil's Tower partial crania from Gibraltar are among the first Neanderthal remains ever found. Here, we show that small amounts of ancient DNA are preserved in the petrous bones of the 2 individuals despite unfavorable climatic conditions. However, the endogenous Neanderthal DNA is present among an overwhelming excess of recent human DNA. Using improved DNA library construction methods that enrich for DNA fragments carrying deaminated cytosine residues, we were able to sequence 70 and 0.4 megabase pairs (Mbp) nuclear DNA of the Forbes' Quarry and Devil's Tower specimens, respectively, as well as large parts of the mitochondrial genome of the Forbes' Quarry individual. We confirm that the Forbes' Quarry individual was a female and the Devil's Tower individual a male. We also show that the Forbes' Quarry individual is genetically more similar to the ∼120,000-y-old Neanderthals from Scladina Cave in Belgium (Scladina I-4A) and Hohlenstein-Stadel Cave in Germany, as well as to a ∼60,000- to 70,000-y-old Neanderthal from Russia (Mezmaiskaya 1), than to a ∼49,000-y-old Neanderthal from El Sidrón (El Sidrón 1253) in northern Spain and other younger Neanderthals from Europe and western Asia. This suggests that the Forbes' Quarry fossil predates the latter Neanderthals. The preservation of archaic human DNA in the warm coastal climate of Gibraltar, close to the shores of Africa, raises hopes for the future recovery of archaic human DNA from regions in which climatic conditions are less than optimal for DNA preservation.


Subject(s)
DNA, Ancient , Neanderthals/genetics , Oligonucleotide Array Sequence Analysis , Animals , Gibraltar , History, Ancient , Humans
8.
Nature ; 534(7606): 200-5, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27135931

ABSTRACT

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.


Subject(s)
Ice Cover , White People/genetics , White People/history , Animals , Biological Evolution , DNA/analysis , DNA/genetics , DNA/isolation & purification , Europe , Female , Founder Effect , Genetics, Population , History, Ancient , Human Migration/history , Humans , Male , Middle East , Neanderthals/genetics , Phylogeny , Population Dynamics , Selection, Genetic , Sequence Analysis, DNA , Time Factors
9.
Can J Cardiol ; 32(5): 680-686.e4, 2016 05.
Article in English | MEDLINE | ID: mdl-27118295

ABSTRACT

Aging is considered the most important nonmodifiable risk factor for cardiovascular disease and death after age 28 years. Because of demographic changes the world population is expected to increase to 9 billion by the year 2050 and up to 12 billion by 2100, with several-fold increases among those 65 years of age and older. Healthy aging and prevention of aging-related diseases and associated health costs have become part of political agendas of governments around the world. Atherosclerotic vascular burden increases with age; accordingly, patients with progeria (premature aging) syndromes die from myocardial infarctions or stroke as teenagers or young adults. The incidence and prevalence of arterial hypertension also increases with age. Arterial hypertension-like diabetes and chronic renal failure-shares numerous pathologies and underlying mechanisms with the vascular aging process. In this article, we review how arterial hypertension resembles premature vascular aging, including the mechanisms by which arterial hypertension (as well as other risk factors such as diabetes mellitus, dyslipidemia, or chronic renal failure) accelerates the vascular aging process. We will also address the importance of cardiovascular risk factor control-including antihypertensive therapy-as a powerful intervention to interfere with premature vascular aging to reduce the age-associated prevalence of diseases such as myocardial infarction, heart failure, hypertensive nephropathy, and vascular dementia due to cerebrovascular disease. Finally, we will discuss the implementation of endothelial therapy, which aims at active patient participation to improve primary and secondary prevention of cardiovascular disease.


Subject(s)
Aging , Antihypertensive Agents/therapeutic use , Hypertension/prevention & control , Hypertension/physiopathology , Vascular Stiffness , Dementia, Vascular/complications , Diabetes Complications/prevention & control , Dyslipidemias/complications , Heart Failure/complications , Humans , Hypertension/therapy , Hypertension, Renal/complications , Kidney Failure, Chronic/complications , Myocardial Infarction/complications , Nephritis/complications , Risk Factors
10.
Nature ; 522(7555): 207-11, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25731166

ABSTRACT

We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.


Subject(s)
Cultural Evolution/history , Grassland , Human Migration/history , Language/history , Europe/ethnology , Genome, Human/genetics , History, Ancient , Humans , Male , Polymorphism, Genetic/genetics , Population Dynamics , Russia
11.
Proc Natl Acad Sci U S A ; 110(6): 2223-7, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23341637

ABSTRACT

Hominins with morphology similar to present-day humans appear in the fossil record across Eurasia between 40,000 and 50,000 y ago. The genetic relationships between these early modern humans and present-day human populations have not been established. We have extracted DNA from a 40,000-y-old anatomically modern human from Tianyuan Cave outside Beijing, China. Using a highly scalable hybridization enrichment strategy, we determined the DNA sequences of the mitochondrial genome, the entire nonrepetitive portion of chromosome 21 (∼30 Mbp), and over 3,000 polymorphic sites across the nuclear genome of this individual. The nuclear DNA sequences determined from this early modern human reveal that the Tianyuan individual derived from a population that was ancestral to many present-day Asians and Native Americans but postdated the divergence of Asians from Europeans. They also show that this individual carried proportions of DNA variants derived from archaic humans similar to present-day people in mainland Asia.


Subject(s)
DNA, Mitochondrial/genetics , Hominidae/genetics , Animals , Asian People/genetics , Asian People/history , Base Sequence , China , Chromosomes, Human, Pair 21/genetics , DNA, Mitochondrial/history , DNA, Mitochondrial/isolation & purification , Fossils , Gene Library , Genetics, Population , History, Ancient , Humans , Molecular Sequence Data , Phylogeny , Phylogeography , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL