Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 267: 115653, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37948939

ABSTRACT

Red pitaya, the representative tropical and subtropical fruit, is vulnerable to quality deterioration due to climate or agronomic measures. Nano-selenium (Nano-Se) has shown positive effects on crop biofortification in favour of reversing this situation. In this study, Se could be enriched efficiently in red pitayas via root and foliar application by Nano-Se, which induced higher phenolic acids (16.9-94.2%), total phenols (15.7%), total flavonoids (29.5%) and betacyanins (34.1%) accumulation in flesh. Richer antioxidative features including activities of SOD (25.2%), CAT (33.8%), POD (77.2%), and levels of AsA (25.7%) and DPPH (14.7%) were obtained in Nano-Se-treated pitayas as well as in their 4-8 days shelf-life. The non-targeted metabolomics indicated a boost in amino acids, resulting in the stimulation of phenylpropanoid and betalain biosynthesis. In conclusion, the mechanism of Nano-Se biofortification for red pitaya might be fortifying pigment, as well as the enzymatic and non-enzymatic antioxidant substances formation by regulating primary and secondary metabolism facilitated by Se accumulation.


Subject(s)
Cactaceae , Selenium , Betalains , Biofortification , Fruit , Secondary Metabolism , Antioxidants
2.
J Plant Physiol ; 289: 154095, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37741053

ABSTRACT

Few studies have been conducted to investigate the impact of pesticides on the secondary metabolism of traditional Chinese medicine and strategies to mitigate the toxicity of pesticide-induced oxidative stress. The current study focuses on evaluating the potential impacts of nano selenium (NSe) and imidacloprid (IMI) on the quality, physiological biochemistry, and secondary metabolites in Perilla frutescens (L.) Britt. (P. frutescens). The study utilized metabolome analysis to explore the toxicity mechanism of IMI. The study noted that IMI-induced stress could emerge with detrimental effects by targeting the destruction of the phenylpropanoid biosynthesis pathway. IMI-induced phenylpropanoid metabolism disorder resulted in an 8%, 17%, 25%, 10%, 65%, and 29% reduction in phenylalanine, coniferyl aldehyde, ferulic acid, cafestol, p-coumaraldehyde, and p-coumaric acid levels, respectively. Under the treatment of exogenous NSe, the levels of these metabolites were increased by 16%, 32%, 22%, 22%, 92%, and 29%, respectively. The application of exogenous NSe increased the levels of these metabolites and improved the biochemical disorder and quality of P. frutescens leaves by optimizing the phenylpropanoid metabolic pathway and enhancing the antioxidant system. Overall, the results suggest that foliar application of NSe could alleviate the oxidative stress toxicity induced by IMI and improve the quality of P. frutescens.

3.
J Sci Food Agric ; 103(10): 5096-5107, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36974656

ABSTRACT

BACKGROUND: Lignification causes a detrimental impact on the quality of edible sprouts. However, the mechanism of inhibition of lignification of edible sprouts by nano-selenium and lentinans remains unclear. RESULTS: To reveal the mechanism of lignification regulation of sprouts by nano-selenium and lentinans, this study investigated the changes in antioxidant indicators, phytohormones, polyphenols, and metabolites in the lignin biosynthesis in pea sprouts following sprays of nano-selenium or/and lentinans twice. There was an overall increase in the aforementioned indices following treatment. In particular, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans was more effective than their individual applications in enhancing peroxidase, catalase, DPPH free-radical scavenging rate, luteolin, and sinapic acid, as well as inhibiting malondialdehyde generation and lignin accumulation. Combined with the results from correlation analysis, nano-selenium and lentinans may inhibit lignification by enhancing antioxidant systems, inducing phytohormone-mediated signaling, and enriching precursor metabolites (caffeyl alcohol, sinapyl alcohol, 4-coumaryl alcohol). In terms of the results of non-targeted metabolomics, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans mainly affected biosynthesis of plant secondary metabolites, biosynthesis of phenylpropanoids, phenylpropanoid biosynthesis, arginine and proline metabolism, and linoleic acid metabolism pathways, which supported and complemented results from targeted screenings. CONCLUSION: Overall, the combined sprays of nano-selenium and lentinans showed synergistic effects in delaying lignification and optimizing the quality of pea sprouts. This study provides a novel and practicable technology for delaying lignification in the cultivation of edible sprouts. © 2023 Society of Chemical Industry.


Subject(s)
Metabolomics , Pisum sativum , Antioxidants/chemistry , Pisum sativum/metabolism , Selenium/chemistry , Nanostructures , Seedlings/chemistry
4.
Plant Physiol Biochem ; 196: 982-992, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36893613

ABSTRACT

Nano-selenium (nano-Se) and melatonin (MT) applications confirmed to boost plant growth and resistance. The mechanism of various ratios of nano-Se and MT foliar application postpone the senescence of fresh cut carnation flowers and improve vase life remains unclear. In this study, a combined effect with nano-Se (nano-Se5, 5 mg/L) and MT(MT1, 1 mg/L) was preferable to the control, nano-Se, and MT treatment alone when it came to delaying flower senescence. They enhance the antioxidant ability of carnation flowers by lowering MDA and H2O2 levels, raising SOD and POD concentrations, and lowering procyanidins biosynthesis (catechins and epicatechin). Inducing the biosynthesis of hormonal compounds (salicylic acid, jasmonic acid, and abscisic acid), their combination also boosted the growth of carnations. Biofortification with nano-Se and MT substantially increased the amounts of key lignin biosynthesis pathway metabolites (L-phenylalanine, p-hydroxycinnamic acid, p-coumaric acid, perillyl alcohol, p-Coumaryl alcohol, and cinnamic acid), which may increase stem cellular thickness and facilitate water absorption and transmission. The study hypothesizes that nano-Se and MT synergistic applications act as a new efficient non-toxic preservative to extend the vase life and improve the decorative value of carnations.


Subject(s)
Dianthus , Melatonin , Selenium , Melatonin/pharmacology , Flowers/metabolism , Hydrogen Peroxide , Antioxidants/metabolism
5.
J Nanobiotechnology ; 20(1): 523, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496437

ABSTRACT

Selenium (Se) maintains soil-plant homeostasis in the rhizosphere and regulates signaling molecules to mitigate cadmium (Cd) toxicity. However, there has been no systematic investigation of the effects of nano-selenium (nano-Se) on the regulation of non-target metabolites and nutritional components in pepper plants under Cd stress. This study investigated the effects of Cd-contaminated soil stress and nano-Se (1, 5, and 20 mg/L) on the metabolic mechanism, fruit nutritional quality, and volatile organic compounds (VOCs) composition of pepper plants. The screening of differential metabolites in roots and fruit showed that most were involved in amino acid metabolism and capsaicin production. Amino acids in roots (Pro, Trp, Arg, and Gln) and fruits (Phe, Glu, Pro, Arg, Trp, and Gln) were dramatically elevated by nano-Se biofortification. The expression of genes of the phenylpropane-branched fatty acid pathway (BCAT, Fat, AT3, HCT, and Kas) was induced by nano-Se (5 mg/L), increasing the levels of capsaicin (29.6%), nordihydrocapsaicin (44.2%), and dihydrocapsaicin (45.3%). VOCs (amyl alcohol, linalool oxide, E-2-heptaldehyde, 2-hexenal, ethyl crotonate, and 2-butanone) related to crop resistance and quality were markedly increased in correspondence with the nano-Se concentration. Therefore, nano-Se can improve the health of pepper plants by regulating the capsaicin metabolic pathway and modulating both amino acid and VOC contents.


Subject(s)
Selenium , Soil Pollutants , Cadmium/chemistry , Selenium/chemistry , Nutritive Value , Amino Acids
6.
J Plant Physiol ; 279: 153836, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244262

ABSTRACT

Irrational use of pesticides may lead to physiological and metabolic disorders in different crops. However, there are limited investigations on impacts of insecticides on physiology and biochemistry, secondary metabolic pathways, and associated quality of medicinal plants such as peppermint (Mentha × piperita L.). In this study, target metabolites in peppermint were monitored following foliar spraying of five insecticides: imidacloprid, pyriproxyfen, acetamiprid, chlorantraniliprole, and chlorfenapyr. Compared with the control, all insecticide treatments caused a significant loss of soluble protein (decreased by 22.3-38.7%) in peppermint leaves. Insecticides induced an increase in the levels of phytohormones jasmonic acid and abscisic acid in response to these chemical stresses. Among them, imidacloprid increased jasmonic acid by 388.3%, and pyriproxyfen increased abscisic acid by 98.8%. The contents of phenylpropanoid metabolites, including rutin, quercetin, apigenin, caffeic acid, 4-hydroxybenzoic acid, ferulic acid, syringic acid, and sinapic acid showed a decreasing trend, with pyriproxyfen decreasing the levels of quercetin and 4-hydroxybenzoic acid by 78.8% and 72.6%, respectively. Combined with correlation analysis, the content of lignin in leaves shows different degrees of negative correlations with several phenolic acids. It could be inferred that insecticides may trigger plant defense mechanisms that accumulate lignin (increased by 24.6-49.1%) in leaves by consuming phenolic acids to barricade absorption of insecticides. Through constructing networks between phytohormones and secondary metabolites, peppermint may regulate the contents of caffeic acid, 4-hydroxybenzoic acid, and sinapic acid by the antagonistic effect between salicylic acid and abscisic acid in response to insecticidal stresses. Principal component analysis and systemic cluster analysis revealed that the most pronounced changes in physiological indexes and metabolites were caused by the pyriproxyfen treatment. In conclusion, this study improves our understanding of the mechanism by which insecticides affect plant physiological and metabolic processes, thus potentially altering the quality and therapeutic value of peppermint as an example.


Subject(s)
Insecticides , Mentha piperita , Mentha piperita/metabolism , Insecticides/pharmacology , Insecticides/analysis , Insecticides/metabolism , Lignin/metabolism , Parabens/analysis , Parabens/metabolism , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Quercetin/analysis , Plant Leaves/metabolism , Caffeic Acids/analysis , Caffeic Acids/metabolism
7.
Front Nutr ; 9: 973027, 2022.
Article in English | MEDLINE | ID: mdl-36091251

ABSTRACT

Nano-selenium (nano-Se) has been extensively explored as a biostimulant for improving the quality of grain crops. However, there are few reports about the effect on the medicinal components of Chinese herbal medicine cultured with nano-Se. Here, we sprayed nano-Se during the cultivation of Panax notoginseng (SePN), and measured the changes of medicinal components compared with conventional Panax notoginseng (PN). Furthermore, we identified a more pronounced effect of SePN on reducing obesity in animals compared with PN. By measuring antioxidant capacity, histopathology, gene expression related to glycolipid metabolism, and gut microbiota composition, we propose a potential mechanism for SePN to improve animal health. Compared with the control groups, foliar spraying of nano-Se increased saponins contents (Rb2, Rb3, Rc, F2, Rb2, and Rf) in the roots of Panax notoginseng, the content of Rb2 increased by 3.9 times particularly. Interestingly, animal studies indicated that taking selenium-rich Panax notoginseng (SePN) can further ameliorate liver antioxidation (SOD, MDA, and GSH) and enzyme activities involved in glycolipid metabolism (ATGL and PFK). It also relieved inflammation and regulated the expression of genes (MCAD, PPAR-α, and PCSK9) related to fatty acid oxidation. The abundance ratio of Firmicutes/Bacteroides and beneficial bacteria abundance (Bifidobacterium, Butyricimonas, and Parasutterella) in gut microbiota were improved relative to the control. In summary, the application of nano-Se on PN may effectively raise the content of Panax notoginseng saponins (PNS) and immensely lower the risk of metabolic disorders of glycolipids.

SELECTION OF CITATIONS
SEARCH DETAIL