ABSTRACT
In the present paper, products obtained from a blue-green microalga Spirulina platensis filtrate (applied for seed soaking and for foliar spray) and homogenate (used for seed coating) were tested in the cultivation of radish. Their effect on length, wet mass, multielemental composition and the greenness index of the radish leaves was examined. Multi-elemental analyses of the algal products, and radish were also performed using inductively coupled plasma-optical emission spectrometry (ICP-OES). The best soaking time, concentrations of filtrate and doses of homogenate were established. The longest and heaviest plants were observed for homogenate applied at a dose of 300 µL per 1.5 g of seeds and 15% of filtrate applied as foliar spray. The highest chlorophyll content was found in the group treated with 100 µL of homogenate and 5% of filtrate. In the case of soaking time, the longest plants were in the group where seeds were soaked for 6 h, but the heaviest and greenest were after soaking for 48 h. The applied algal products increased the content of elements in seedlings. Obtained results proved that algal extracts have high potential to be applied in modern horticulture and agriculture. The use of Spirulina-based products is consistent with the idea of sustainable agriculture that could help to ensure production of sufficient human food to meet the needs of rising population and protection of the environment.
Subject(s)
Agriculture , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Seeds/drug effects , Spirulina/chemistry , Biological Products/chemistry , Biological Products/isolation & purification , Chemical Fractionation/methods , Chlorophyll , Filtration , Germination , Plant Development , Plant Extracts/chemistry , Plant Leaves/drug effects , Plant Leaves/growth & development , Raphanus/drug effects , Raphanus/growth & development , Seedlings/drug effects , Seedlings/growth & development , Seeds/growth & developmentABSTRACT
This study presents results obtained from feeding experiment on laying hens, which were fed with the diet supplemented with two marine macroalgae: Enteromorpha prolifera and Cladophora sp., enriched with microelements [Cu(II), Zn(II), Co(II), Mn(II), Cr(III)]. The applicability of the preparation was tested on five experimental groups of laying hens and one control group. In the control group, microelements were supplemented in the inorganic form, whereas in experimental groups, Cu, Zn, Co, Mn and Cr were replaced by macroalgae enriched with a given microelement ion. During feeding experiment, weight of laying hens, weight of eggs, eggshell thickness and mineral content of blood, feathers, droppings, eggs content (separately yolk and egg white) and eggshell were measured. Also egg number was counted and microclimate (temperature and relative humidity) was monitored. Supplementing bio-metallic feed additives to the diet of laying hens resulted in higher microelement transfer to eggs and enhanced the colour of yolk. It was also found that the presence of Enteromorpha prolifera and Cladophora sp. in laying hens diet influenced advantageously eggs weight, eggshell thickness as well as body weight of hens. On the basis of these results, it could be concluded that Enteromorpha prolifera and Cladophora sp. enriched with microelement ions could be potentially used as mineral feed additives in laying hens feeding.