Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Front Immunol ; 15: 1304686, 2024.
Article in English | MEDLINE | ID: mdl-38476230

ABSTRACT

Background: Growing evidence highlights the significant impact of diet to modify low-grade inflammation closely linked to cardiometabolic profile. Multifunctionnal diets, combining several compounds have been shown to beneficially impact metabolic parameters. Objective: This study synthesizes the knowledge on the impact of RCTs combining dietary multifunctional compounds on low-grade inflammation in humans. We investigate whether the effects of dietary multifunctional interventions on inflammatory markers were parallel to alterations of cardiometabolic parameters. Methodology: We considered both the integrated dietary interventions (ID, i.e. global diets such as Mediterranean, Nordic…) and the dietary interventions based on selected bioactive mix (BM) compounds, in healthy individuals and those at cardiometabolic risk. Out of 221 screened publications, we selected 27 studies: 11 for BM (polyphenols and/or omega-3 fatty acids and/or antioxidants and/or dietary fiber) and 16 for ID (Mediterranean, paleo, Nordic, Dietary Approaches to Stop Hypertension (DASH) diet…). Results: ID studies reflected significant improvements in inflammatory markers (CRP, IL-6, IL-10, IL-1b), concomitantly with beneficial changes in metabolic parameters. In BM studies, pronounced effects on low-grade inflammatory markers were observed, while improvements in metabolic parameters were not consistent. Both types of studies suggested a favorable impact on oxidative stress, a factor closely linked to the inflammatory profile. Conclusion: Our findings showed that multifunctional RCT diets have differential role in managing low-grade inflammation and cardiometabolic health, with a large heterogeneity in explored inflammatory markers. Further research is imperative to elucidate the link between low-grade inflammation and other cardiometabolic risk factors, such as intestinal inflammation or postprandial inflammatory dynamics, aiming to attain a comprehensive understanding of the mechanisms involved in these processes. These future investigations not only have the potential to deepen our insights into the connections among these elements but also pave the way for significant advancements in the prevention and management of conditions related to the cardiovascular and metabolic systems.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Dietary Approaches To Stop Hypertension , Humans , Diet , Inflammation , Cardiovascular Diseases/prevention & control
2.
Nutrients ; 15(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36771214

ABSTRACT

Abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3) are rare recessive disorders of lipoprotein metabolism due to mutations in MTTP and SAR1B genes, respectively, which lead to defective chylomicron formation and secretion. This results in lipid and fat-soluble vitamin malabsorption, which induces severe neuro-ophthalmic complications. Currently, treatment combines a low-fat diet with high-dose vitamin A and E supplementation but still fails in normalizing serum vitamin E levels and providing complete ophthalmic protection. To explore these persistent complications, we developed two knock-out cell models of FHBL-SD1 and FHBL-SD3 using the CRISPR/Cas9 technique in Caco-2/TC7 cells. DNA sequencing, RNA quantification and Western blotting confirmed the introduction of mutations with protein knock-out in four clones associated with i) impaired lipid droplet formation and ii) defective triglyceride (-57.0 ± 2.6% to -83.9 ± 1.6%) and cholesterol (-35.3 ± 4.4% to -60.6 ± 3.5%) secretion. A significant decrease in α-tocopherol secretion was also observed in these clones (-41.5 ± 3.7% to -97.2 ± 2.8%), even with the pharmaceutical forms of vitamin E: tocopherol-acetate and tocofersolan (α-tocopheryl polyethylene glycol succinate 1000). MTTP silencing led to a more severe phenotype than SAR1B silencing, which is consistent with clinical observations. Our cellular models thus provide an efficient tool to experiment with therapeutic strategies and will allow progress in understanding the mechanisms involved in lipid metabolism.


Subject(s)
Hypobetalipoproteinemias , Monomeric GTP-Binding Proteins , Humans , alpha-Tocopherol , Apolipoproteins B/genetics , Caco-2 Cells , Enterocytes/metabolism , Hypobetalipoproteinemias/genetics , Hypobetalipoproteinemias/metabolism , Monomeric GTP-Binding Proteins/metabolism , Vitamin E/pharmacology
3.
Mol Nutr Food Res ; 67(7): e2200461, 2023 04.
Article in English | MEDLINE | ID: mdl-36708587

ABSTRACT

SCOPE: Lipopolysaccharides and their transporters, LBP and sCD14, are involved in systemic inflammation following a high-fat diet. Natural emulsifiers such as soy lecithin, rich in soybean polar lipids (SPL), are often used by the food industry but little is known about effects of associating SPL with different oils. METHODS AND RESULTS: Thus, this study investigates the effects of 4 weeks feeding of palm (P) or rapeseed (R) oil-enriched diets with or without SPL in mice, on white adipose tissue (WAT) inflammation, on ileum permeability, and on microbiota composition. When SPL are associated with rapeseed oil, a greater gene expression of leptin and inflammation in WAT is observed compared to P-SPL. In ileum, R-SPL group results in a lower expression of TLR4, IAP that detoxify bacterial LPS and tight junction proteins than R group. In turn, the gene expression of Reg3ß and Reg3γ, which have antimicrobial activity, is higher in ileum of R-SPL group than in R group. SPL in rapeseed oil increases specific bacterial species belonging to Lachnospiraceae, Alistipes, and Bacteroidales. CONCLUSION: The incorporation of SPL in a diet with rapeseed oil exerts differential effect on WAT and ileum, with respectively an inflammation of WAT and an antimicrobial activity in ileum, associated with specific microbiota changes.


Subject(s)
Anti-Infective Agents , Diet, High-Fat , Mice , Animals , Diet, High-Fat/adverse effects , Lecithins , Rapeseed Oil/pharmacology , Adipose Tissue/metabolism , Adipose Tissue, White , Inflammation/metabolism , Glycine max , Ileum/metabolism , Anti-Infective Agents/pharmacology
4.
Biochimie ; 203: 11-19, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35817131

ABSTRACT

Elevated concentrations of triglyceride-rich lipoproteins (TGRL) in the fasting and postprandial states are risk factors for cardiovascular events, especially in type 2 diabetes (T2D). T2D modifies the lipid composition of plasma and lipoproteins and some sphingolipids (SP) have been validated as potent predictive biomarkers of cardiovascular disease occurrence. The main objectives of the present study were to characterize the plasma SP profile in fasting T2D patients and to determine whether SP are modified in postprandial TGRL from these patients compared to fasting TGRL. In a randomized parallel-group study, 30 T2D women ingested a breakfast including 20g lipids from either hazelnut cocoa palm oil-rich spread (Palm Nut) or Butter. Plasma was collected and TGRL were isolated by ultracentrifugation at fasting and 4h after the meal. Fasting samples of 6 control subjects from another cohort were analyzed for comparison. SP were analyzed by tandem mass spectrometry. Plasma from fasting T2D patients had higher ceramide (Cer) and ganglioside GM3 concentrations, and lower concentrations of sphingosylphosphorylcholine vs healthy subjects. In postprandial TGRL from T2D patients compared to those in the fasting state, Cer concentrations and especially C16:0, C24:1 and C24:0 molecular species, increased after the Palm Nut or Butter breakfast. A positive correlation was observed in the Palm Nut group between changes (Δ4h-fasting) of summed C16:0+C22:0+C24:1+C24:0 Cer concentrations in TGRL, and changes in plasma TG, TGRL-TG and TGRL-C16:0 concentrations. Altogether in T2D, the altered profile of plasma SP and the increased Cer concentrations in postprandial TGRL could contribute to the increased atherogenicity of TGRL.


Subject(s)
Butter , Diabetes Mellitus, Type 2 , Humans , Female , Palm Oil , Sphingolipids , Triglycerides/chemistry , Lipoproteins
5.
Biochimie ; 203: 106-117, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35041857

ABSTRACT

The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.


Subject(s)
Diglycerides , Enterocytes , Rats , Animals , Diglycerides/metabolism , Enterocytes/metabolism , Lipase/metabolism , Rapeseed Oil/metabolism , Glycerol/metabolism , Triglycerides/metabolism , Digestion , Metabolic Networks and Pathways
6.
Nutrients ; 13(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34959754

ABSTRACT

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Subject(s)
Adipose Tissue/metabolism , Dietary Fiber/administration & dosage , Energy Metabolism/drug effects , Muscle, Skeletal/metabolism , Overnutrition/metabolism , Amino Acids/metabolism , Animals , Bread , Dietary Supplements , Disease Models, Animal , Fatty Acids, Volatile/metabolism , Feces/chemistry , Female , Fermented Foods , Glucose/metabolism , Incretins/metabolism , Intestines/metabolism , Lactic Acid/metabolism , Swine , Swine, Miniature , Urea/metabolism
7.
Mol Nutr Food Res ; 65(9): e2001068, 2021 05.
Article in English | MEDLINE | ID: mdl-33742729

ABSTRACT

SCOPE: Synthetic emulsifiers have recently been shown to promote metabolic syndrome and considerably alter gut microbiota. Yet, data are lacking regarding the effects of natural emulsifiers, such as plant lecithins rich in essential α-linolenic acid (ALA), on gut and metabolic health. METHODS AND RESULTS: For 5 days, male Swiss mice are fed diets containing similar amounts of ALA and 0, 1, 3, or 10% rapeseed lecithin (RL) or 10% soy lecithin (SL). Following an overnight fast, they are force-fed the same oil mixture and euthanized after 90 minutes. The consumption of lecithin significantly increased fecal levels of the Clostridium leptum group (p = 0.0004), regardless of origin or dose, without altering hepatic or intestinal expression of genes of lipid metabolism. 10%-RL increased ALA abundance in plasma triacylglycerols at 90 minutes, reduced cecal bile acid hydrophobicity, and increased their sulfatation, as demonstrated by the increased hepatic RNA expression of Sult2a1 (p = 0.037) and cecal cholic acid-7 sulfate (CA-7S) concentration (p = 0.05) versus 0%-lecithin. CONCLUSION: After only 5 days, nutritional doses of RL and SL modified gut bacteria in mice, by specifically increasing C. leptum group. RL also increased postprandial ALA abundance and induced beneficial modifications of the bile acid profile. ALA-rich lecithins, especially RL, may then appear as promising natural emulsifiers.


Subject(s)
Bile Acids and Salts/analysis , Brassica napus , Gastrointestinal Microbiome/drug effects , Glycine max , Lecithins/administration & dosage , Lipid Metabolism/drug effects , Animals , Bile Acids and Salts/metabolism , Lipids/blood , Male , Mice , Postprandial Period/physiology , alpha-Linolenic Acid/administration & dosage
8.
J Nutr ; 150(11): 2900-2911, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32937654

ABSTRACT

BACKGROUND: Soybean lecithin, a plant-based emulsifier widely used in food, is capable of modulating postprandial lipid metabolism. With arising concerns of sustainability, alternative sources of vegetal lecithin are urgently needed, and their metabolic effects must be characterized. OBJECTIVES: We evaluated the impact of increasing doses of rapeseed lecithin (RL), rich in essential α-linolenic acid (ALA), on postprandial lipid metabolism and ALA bioavailability in lymph-cannulated rats. METHODS: Male Wistar rats (8 weeks old) undergoing a mesenteric lymph duct cannulation were intragastrically administered 1 g of an oil mixture containing 4% ALA and 0, 1, 3, 10, or 30% RL (5 groups). Lymph fractions were collected for 6 h. Lymph lipids and chylomicrons (CMs) were characterized. The expression of genes implicated in intestinal lipid metabolism was determined in the duodenum at 6 h. Data was analyzed using either sigmoidal or linear mixed-effects models, or one-way ANOVA, where appropriate. RESULTS: RL dose-dependently increased the lymphatic recovery (AUC) of total lipids (1100 µg/mL·h per additional RL%; P = 0.010) and ALA (50 µg/mL·h per additional RL%; P = 0.0076). RL induced a faster appearance of ALA in lymph, as evidenced by the exponential decrease of the rate of appearance of ALA with RL (R2 = 0.26; P = 0.0064). Although the number of CMs was unaffected by RL, CM diameter was increased in the 30%-RL group, compared to the control group (0% RL), by 86% at 3-4 h (P = 0.065) and by 81% at 4-6 h (P = 0.0002) following administration. This increase was positively correlated with the duodenal mRNA expression of microsomal triglyceride transfer protein (Mttp; ρ= 0.63; P = 0.0052). The expression of Mttp and secretion-associated, ras-related GTPase 1 gene homolog B (Sar1b, CM secretion), carnitine palmitoyltransferase IA (Cpt1a) and acyl-coenzyme A oxidase 1 (Acox1, beta-oxidation), and fatty acid desaturase 2 (Fads2, bioconversion of ALA into long-chain n-3 PUFAs) were, respectively, 49%, 29%, 74%, 48%, and 55% higher in the 30%-RL group vs. the control group (P < 0.05). CONCLUSIONS: In rats, RL enhanced lymphatic lipid output, as well as the rate of appearance of ALA, which may promote its subsequent bioavailability and metabolic fate.


Subject(s)
Brassica napus/chemistry , Lecithins/pharmacology , Lipid Metabolism/drug effects , Lymph/chemistry , Lymph/metabolism , alpha-Linolenic Acid/metabolism , Animals , Biological Availability , Lecithins/chemistry , Rats , alpha-Linolenic Acid/chemistry
9.
Biochimie ; 169: 121-132, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31786232

ABSTRACT

Vegetable lecithins, widely used in the food industry as emulsifiers, are a mixture of naturally occurring lipids containing more than 50% of phospholipids (PL). PL exert numerous important physiological effects. Their amphiphilic nature notably enables them to stabilise endogenous lipid droplets, conferring them an important role in lipoprotein transport, functionality and metabolism. In addition, beneficial effects of dietary lecithin on metabolic disorders have been reported since the 1990s. This review attempts to summarize the effects of various vegetable lecithins on lipid and lipoprotein metabolism, as well as their potential application in the treatment of dyslipidemia associated with metabolic disorders. Despite controversial data concerning the impact of vegetable lecithins on lipid digestion and intestinal absorption, the beneficial effect of lecithin supplementation on plasma and hepatic lipoprotein and cholesterol levels is unequivocal. This is especially true in hyperlipidemic patients. Furthermore, the immense compositional diversity of vegetable lecithins endows them with a vast range of biochemical and biological properties, which remain to be explored in detail. Data on the effects of vegetable lecithins alternative to soybean, both as supplements and as ingredients in different foods, is undoubtedly lacking. Given the exponential demand for vegetable products alternative to those of animal origin, it is of primordial importance that future research is undertaken in order to elucidate the mechanisms by which individual fatty acids and PL from various vegetable lecithins modulate lipid metabolism. The extent to which they may influence parameters associated with metabolic disorders, such as intestinal integrity, low-grade inflammation and gut microbiota must also be assessed.


Subject(s)
Cardiovascular Diseases/prevention & control , Food Additives/metabolism , Lecithins/metabolism , Lipid Metabolism Disorders/prevention & control , Lipid Metabolism/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Dietary Supplements/analysis , Food Additives/administration & dosage , Food Additives/chemistry , Food Additives/isolation & purification , Gastrointestinal Microbiome/physiology , Humans , Intestinal Absorption/physiology , Lecithins/administration & dosage , Lecithins/chemistry , Lecithins/isolation & purification , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/pathology , Liver/drug effects , Liver/metabolism , Vegetables/chemistry
10.
Gut ; 69(3): 487-501, 2020 03.
Article in English | MEDLINE | ID: mdl-31189655

ABSTRACT

OBJECTIVE: To investigate whether milk polar lipids (PL) impact human intestinal lipid absorption, metabolism, microbiota and associated markers of cardiometabolic health. DESIGN: A double-blind, randomised controlled 4-week study involving 58 postmenopausal women was used to assess the chronic effects of milk PL consumption (0, 3 or 5 g-PL/day) on lipid metabolism and gut microbiota. The acute effects of milk PL on intestinal absorption and metabolism of cholesterol were assessed in a randomised controlled crossover study using tracers in ileostomy patients. RESULTS: Over 4 weeks, milk PL significantly reduced fasting and postprandial plasma concentrations of cholesterol and surrogate lipid markers of cardiovascular disease risk, including total/high-density lipoprotein-cholesterol and apolipoprotein (Apo)B/ApoA1 ratios. The highest PL dose preferentially induced a decreased number of intestine-derived chylomicron particles. Also, milk PL increased faecal loss of coprostanol, a gut-derived metabolite of cholesterol, but major bacterial populations and faecal short-chain fatty acids were not affected by milk PL, regardless of the dose. Acute ingestion of milk PL by ileostomy patients shows that milk PL decreased cholesterol absorption and increased cholesterol-ileal efflux, which can be explained by the observed co-excretion with milk sphingomyelin in the gut. CONCLUSION: The present data demonstrate for the first time in humans that milk PL can improve the cardiometabolic health by decreasing several lipid cardiovascular markers, notably through a reduced intestinal cholesterol absorption involving specific interactions in the gut, without disturbing the major bacterial phyla of gut microbiota. TRIAL REGISTRATION NUMBER: NCT02099032 and NCT02146339; Results.


Subject(s)
Cardiovascular Diseases/blood , Lipid Metabolism/drug effects , Lipids/pharmacology , Overweight/metabolism , Sphingomyelins/metabolism , Animals , Apolipoprotein A-I/blood , Apolipoprotein B-100/blood , Cholestanol/metabolism , Cholesterol/metabolism , Cholesterol, HDL/blood , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Emulsifying Agents/pharmacology , Feces/chemistry , Female , Gastrointestinal Microbiome/drug effects , Humans , Ileostomy , Intestinal Absorption/drug effects , Lipids/administration & dosage , Lipids/analysis , Middle Aged , Milk/chemistry , Postmenopause , Risk Factors
11.
Mol Nutr Food Res ; 63(11): e1801148, 2019 06.
Article in English | MEDLINE | ID: mdl-30848861

ABSTRACT

SCOPE: Obese adipose tissue (AT) is infiltrated by inflammatory immune cells including IL-17A-producing-T (Th17) cells. It has been previously demonstrated that adipose-derived stem cells from obese (ob-ASCs), but not lean AT promote Th17 cells. Because n-3 PUFAs are known to inhibit obese AT inflammation, it is tested here whether they could inhibit ob-ASC-mediated IL-17A secretion. METHODS AND RESULTS: The n-3 PUFA precursor, alpha-linolenic acid (ALA), or its derivatives, eicosapentaenoic, or docosahexaenoic acid, is added to co-cultures of human ob-ASCs and mononuclear cells (MNCs). All three inhibited IL-17A, but not IL-1ß, IL-6, nor TNFα  secretion. As a control, palmitic acid (PA), a saturated fatty acid, did not inhibit IL-17A secretion. ALA also inhibited IL-17A secretion mediated by adipocytes differentiated from ob-ASCs. Toll-like-receptor 4 is shown to be involved in ob-ASC-mediated-IL-17A secretion, and to be inhibited by ALA, together with Cyclo-Oxygenase-2 and Signal-Transducer-and-Activator-of-transcription-3. In addition, ALA down-regulated Intercellular-Adhesion-Molecule-1 (ICAM-1) expression in both monocytes and ASCs, which resulted in decreased interactions between ob-ASCs and MNCs, and inhibition of IL-17A secretion. CONCLUSION: It is demonstrated herein that ALA inhibits Th17 cell promotion, through decreased ICAM-1expression in both ob-ASCs and monocytes. This novel mechanism may contribute to explain the beneficial effects of n-3 PUFA in IL-17A-related inflammatory pathologies.


Subject(s)
Adipose Tissue/cytology , Fatty Acids, Omega-3/pharmacology , Intercellular Adhesion Molecule-1/genetics , Interleukin-17/antagonists & inhibitors , Obesity/metabolism , Stem Cells/physiology , Th17 Cells/drug effects , Cell Aggregation/drug effects , Coculture Techniques , Humans , Interleukin-17/biosynthesis , STAT3 Transcription Factor/antagonists & inhibitors , Stem Cells/drug effects , Stem Cells/immunology , Th17 Cells/immunology , Toll-Like Receptor 4/antagonists & inhibitors , alpha-Linolenic Acid/pharmacology
12.
Mol Nutr Food Res ; 63(4): e1801078, 2019 02.
Article in English | MEDLINE | ID: mdl-30628158

ABSTRACT

SCOPE: Enhanced adiposity and metabolic inflammation are major features of obesity associated with altered gut microbiota and intestinal barrier. How these metabolic outcomes can be impacted by milk polar lipids (MPL), naturally containing 25% of sphingomyelin, is investigated in mice fed a mixed high-fat (HF) diet . METHODS AND RESULTS: Male C57Bl/6 mice receive a HF-diet devoid of MPL (21% fat, mainly palm oil, in chow), or supplemented with 1.1% or 1.6% of MPL (HF-MPL1; HF-MPL2) via a total-lipid extract from butterserum concentrate for 8 weeks. HF-MPL2 mice gain less weight versus HF (p < 0.01). Diets do not impact plasma markers of inflammation but in the liver, HF-MPL2 tends to decrease hepatic gene expression of macrophage marker F4/80 versus HF-MPL1 (p = 0.06). Colonic crypt depth is the maximum in HF-MPL2 (p < 0.05). In cecal microbiota, HF-MPL1 increases Bifidobacterium animalis versus HF (p < 0.05). HF-MPL2 decreases Lactobacillus reuteri (p < 0.05), which correlates negatively with the fecal loss of milk sphingomyelin-specific fatty acids (p < 0.05). CONCLUSION: In mice fed a mixed HF diet, MPL can limit HF-induced body weight gain and modulate gut physiology and the abundance in microbiota of bacteria of metabolic interest. This supports further exploration of how residual unabsorbed lipids reaching the colon can impact HF-induced metabolic disorders.


Subject(s)
Fatty Acids/metabolism , Gastrointestinal Microbiome/drug effects , Lipids/pharmacology , Milk/chemistry , Animals , Diet, High-Fat , Fatty Acids/analysis , Feces , Intestinal Absorption , Lipids/administration & dosage , Lipids/analysis , Lipids/chemistry , Liver/drug effects , Liver/metabolism , Macrophages/drug effects , Male , Mice, Inbred C57BL , Sphingomyelins/pharmacology , Weight Gain/drug effects
13.
J Lipid Res ; 59(9): 1640-1648, 2018 09.
Article in English | MEDLINE | ID: mdl-30021760

ABSTRACT

Abetalipoproteinemia (ABL) and chylomicron retention disease (CMRD) are extremely rare recessive forms of hypobetalipoproteinemia characterized by intestinal lipid malabsorption and severe vitamin E deficiency. Vitamin E is often supplemented in the form of fat-soluble vitamin E acetate, but fat malabsorption considerably limits correction of the deficiency. In this crossover study, we administered two different forms of vitamin E, tocofersolan (a water-soluble derivative of RRR-α-tocopherol) and α-tocopherol acetate, to three patients with ABL and four patients with CMRD. The aims of this study were to evaluate the intestinal absorption characteristics of tocofersolan versus α-tocopherol acetate by measuring the plasma concentrations of α-tocopherol over time after a single oral load and to compare efficacy by evaluating the ability of each formulation to restore vitamin E storage after 4 months of treatment. In patients with ABL, tocofersolan and α-tocopherol acetate bioavailabilities were extremely low (2.8% and 3.1%, respectively). In contrast, bioavailabilities were higher in patients with CMRD (tocofersolan, 24.7%; α-tocopherol acetate, 11.4%). Plasma concentrations of α-tocopherol at 4 months were not significantly different by formulation type in ABL or CMRD. This study provides new insights about vitamin E status in ABL and CMRD and suggests the potential of different formulations as treatment options.


Subject(s)
Abetalipoproteinemia/metabolism , Hypobetalipoproteinemias/metabolism , Malabsorption Syndromes/metabolism , Vitamin E/pharmacokinetics , alpha-Tocopherol/pharmacokinetics , Adult , Biological Availability , Case-Control Studies , Drug Compounding , Drug Storage , Female , Humans , Intestinal Absorption , Male , Middle Aged , Safety , Vitamin E/blood , Vitamin E/metabolism , alpha-Tocopherol/blood , alpha-Tocopherol/metabolism
14.
Nutr Metab (Lond) ; 15: 22, 2018.
Article in English | MEDLINE | ID: mdl-29568317

ABSTRACT

BACKGROUND: Better choices of dietary lipid sources and substitution of refined by fortified oils could reduce the intake of saturated fatty acids (FA) and increase the intake of omega 3 FA concomitantly to healthy bioactive compounds. METHODS: The development of obesity and metabolic disturbances was explored in rats fed during 11 weeks with a high fat diet (HFD) in which the amount of saturated and polyunsaturated FA was respectively reduced and increased, using rapeseed oil as lipid source. This oil was used in a refined form (R) or fortified (10 fold increase in concentration) with endogenous micronutrients (coenzyme Q10 + tocopherol only (RF) only and also with canolol (RFC)). The effect of substituting palm by rapeseed oil was analysed using a student t test, oil fortification was analysed using ANOVA statistical test. RESULTS: Despite a similar weight gain, diets R, RF and RFC improved glucose tolerance (+ 10%) of the rats compared to a standard HFD with palm and sunflower oils as lipid source. Plasma glucose was lowered in RF and RFC groups (- 15 and 23% respectively), although triacylglycerol level was only reduced in group RFC (- 33%) compared to R. The fortification with canolol promoted the activation of Akt and AMP-activated protein kinase (AMPK) in skeletal muscle and subcutaneous adipose tissue respectively. Canolol supplementation also led to reduce p38 MAPK activation in skeletal muscle. CONCLUSIONS: This study suggests that the presence of endogenous micronutrients in rapeseed oil promotes cellular adaptations to reverse glucose intolerance and improve the metabolism of insulin sensitive tissues.

15.
Nutr Metab (Lond) ; 15: 15, 2018.
Article in English | MEDLINE | ID: mdl-29456586

ABSTRACT

BACKGROUND: Obesity progressively leads to cardiac failure. Omega-3 polyunsaturated fatty acids (PUFA) have been shown to have cardio-protective effects in numerous pathological situations. It is not known whether rapeseed oil, which contains α-linolenic acid (ALA), has a similar protective effect. Omega-3 PUFAs are sensitive to attack by reactive oxygen species (ROS), and lipid peroxidation products could damage cardiac cells. We thus tested whether dietary refined rapeseed oil (RSO) associated with or without different antioxidants (vitamin E, coenzyme Q10 and canolol) is cardio-protective in a situation of abdominal obesity. METHODS: Sixty male Wistar rats were subdivided into 5 groups. Each group was fed a specific diet for 11 weeks: a low-fat diet (3% of lipids, C diet) with compositionally-balanced PUFAs; a high-fat diet rich in palm oil (30% of lipids, PS diet); the PS diet in which 40% of lipids were replaced by RSO (R diet); the R diet supplemented with coenzyme Q10 (CoQ10) and vitamin E (RTC diet); and the RTC diet supplemented with canolol (RTCC diet). At the end of the diet period, the rats were sacrificed and the heart was collected and immediately frozen. Fatty acid composition of cardiac phospholipids was then determined. Several features of cardiac function (fibrosis, inflammation, oxidative stress, apoptosis, metabolism, mitochondrial biogenesis) were also estimated. RESULTS: Abdominal obesity reduced cardiac oxidative stress and apoptosis rate by increasing the proportion of arachidonic acid (AA) in membrane phospholipids. Dietary RSO had the same effect, though it normalized the proportion of AA. Adding vitamin E and CoQ10 in the RSO-rich high fat diet had a deleterious effect, increasing fibrosis by increasing angiotensin-2 receptor-1b (Ag2R-1b) mRNA expression. Overexpression of these receptors triggers coronary vasoconstriction, which probably induced ischemia. Canolol supplementation counteracted this deleterious effect by reducing coronary vasoconstriction. CONCLUSION: Canolol was found to counteract the fibrotic effects of vitamin E + CoQ10 on cardiac fibrosis in the context of a high-fat diet enriched with RSO. This effect occurred through a restoration of cardiac Ag2R-1b mRNA expression and decreased ischemia.

16.
J Nutr Biochem ; 43: 116-124, 2017 05.
Article in English | MEDLINE | ID: mdl-28284063

ABSTRACT

Obesity and type 2 diabetes are nutritional pathologies, characterized by a subclinical inflammatory state. Endotoxins are now well recognized as an important factor implicated in the onset and maintain of this inflammatory state during fat digestion in high-fat diet. As a preventive strategy, lipid formulation could be optimized to limit these phenomena, notably regarding fatty acid profile and PL emulsifier content. Little is known about soybean polar lipid (SPL) consumption associated to oils rich in saturated FA vs. anti-inflammatory omega-3 FA such as α-linolenic acid on inflammation and metabolic endotoxemia. We then investigated in mice the effect of different synthetic diets enriched with two different oils, palm oil or flaxseed oil and containing or devoid of SPL on adipose tissue inflammation and endotoxin receptors. In both groups containing SPL, adipose tissue (WAT) increased compared with groups devoid of SPL and an induction of MCP-1 and LBP was observed in WAT. However, only the high-fat diet in which flaxseed oil was associated with SPL resulted in both higher WAT inflammation and higher circulating sCD14 in plasma. In conclusion, we have demonstrated that LPS transporters LBP and sCD14 and adipose tissue inflammation can be modulated by SPL in high fat diets differing in oil composition. Notably high-flaxseed oil diet exerts a beneficial metabolic impact, however blunted by PL addition. Our study suggests that nutritional strategies can be envisaged by optimizing dietary lipid sources in manufactured products, including fats/oils and polar lipid emulsifiers, in order to limit the inflammatory impact of palatable foods.


Subject(s)
Acute-Phase Proteins/metabolism , Carrier Proteins/metabolism , Glycine max/chemistry , Linseed Oil/pharmacology , Membrane Glycoproteins/metabolism , Palm Oil/pharmacology , Panniculitis/etiology , Animals , Diet, High-Fat , Dietary Supplements , Fatty Acids/analysis , Lipopolysaccharide Receptors/metabolism , Liver/metabolism , Male , Mice, Inbred C57BL
17.
Mol Nutr Food Res ; 60(3): 609-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26592505

ABSTRACT

SCOPE: Enhanced adiposity and metabolic inflammation are major features of obesity that could be impacted by dietary emulsifiers. We investigated in high-fat fed mice the effects of using a new polar lipid (PL) emulsifier from milk (MPL) instead of soybean lecithin (soybean PL [SPL]) on adipose tissue and intestinal mucosa function. METHODS AND RESULTS: Four groups of C57BL6 mice received for 8 wks a low-fat (LF) diet or a high-fat diet devoid of PLs or an high-fat diet including MPL (high-fat-MPL) or SPL (high-fat-SPL). Compared with high-fat diet, high-fat-SPL diet increased white adipose tissue (WAT) mass (p < 0.05), with larger adipocytes (p < 0.05) and increased expression of tumor necrosis factor alpha, monochemoattractant protein-1, LPS-binding protein, and leptin (p < 0.05). This was not observed with high-fat-MPL diet despite similar dietary intakes and increased expression of fatty acid transport protein 4 and microsomal TG transfer protein, involved in lipid absorption, in upper intestine (p < 0.05). High-fat-MPL mice had a lower expression in WAT of cluster of differentiation 68, marker of macrophage infiltration, versus high-fat and high-fat-SPL mice (p < 0.05), and more goblet cells in the colon (p < 0.05). CONCLUSIONS: Unlike SPL, MPL in the high-fat diet did not induce WAT hypertrophy and inflammation but increased colonic goblet cells. This supports further clinical exploration of different sources of dietary emulsifiers in the frame of obesity outbreak.


Subject(s)
Colon/drug effects , Emulsifying Agents/pharmacology , Glycine max/chemistry , Goblet Cells/drug effects , Milk/chemistry , Adipose Tissue, White/drug effects , Adiposity/drug effects , Animals , Caco-2 Cells/drug effects , Colon/cytology , Diet, Fat-Restricted , Diet, High-Fat/adverse effects , Humans , Lecithins/chemistry , Lecithins/pharmacology , Lipids/analysis , Lipids/chemistry , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Panniculitis/chemically induced , Panniculitis/metabolism
18.
J Nutr ; 145(8): 1770-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26136586

ABSTRACT

BACKGROUND: Polar lipid (PL) emulsifiers such as milk PLs (MPLs) may affect digestion and subsequent lipid metabolism, but focused studies on postprandial lipemia are lacking. OBJECTIVE: We evaluated the impact of MPLs on postprandial lipemia in mice and on lipid digestion in vitro. METHODS: Female Swiss mice were gavaged with 150 µL of an oil-in-water emulsion stabilized with 5.7 mg of either MPLs or soybean PLs (SPLs) and killed after 1, 2, or 4 h. Plasma lipids were quantified and in the small intestine, gene expression was analyzed by reverse transcriptase-quantitative polymerase chain reaction. Emulsions were lipolyzed in vitro using a static human digestion model; triglyceride (TG) disappearance was followed by thin-layer chromatography. RESULTS: In mice, after 1 h, plasma TGs tended to be higher in the MPL group than in the SPL group (141 µg/mL vs. 90 µg/mL; P = 0.07) and nonesterified fatty acids (NEFAs) were significantly higher (64 µg/mL vs. 44 µg/mL; P < 0.05). The opposite was observed after 4 h with lower TGs (21 µg/mL vs. 35 µg/mL; P < 0.01) and NEFAs (20 µg/mL vs. 32 µg/mL; P < 0.01) in the MPL group compared with the SPL group. This was associated at 4 h with a lower gene expression of apolipoprotein B (Apob) and Secretion Associated, Ras related GTPase 1 gene homolog B (Sar1b), in the duodenum of MPL mice compared with SPL mice (P < 0.05). In vitro, during the intestinal phase, TGs were hydrolyzed more in the MPL emulsion than in the SPL emulsion (decremental AUCs were 1750%/min vs. 180%/min; P < 0.01). MPLs enhance lipid intestinal hydrolysis and promote more rapid intestinal lipid absorption and sharper kinetics of lipemia. CONCLUSIONS: Postprandial lipemia in mice can be modulated by emulsifying with MPLs compared with SPLs, partly through differences in chylomicron assembly, and TG hydrolysis rate as observed in vitro. MPLs may thereby contribute to the long-term regulation of lipid metabolism.


Subject(s)
Lipid Metabolism/drug effects , Lipids/pharmacology , Lipolysis/drug effects , Milk/chemistry , Animals , Emulsifying Agents , Female , Gene Expression Regulation , Intestine, Small/metabolism , Lecithins , Lipids/chemistry , Mice , Postprandial Period
19.
Nutr Metab (Lond) ; 10(1): 23, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23413782

ABSTRACT

BACKGROUND: Dietary intake of n-3 polyunsaturated fatty acids (PUFA) is primarily recognized to protect against cardiovascular diseases, cognitive dysfunctions and the onset of obesity and associated metabolic disorders. However, some of their properties such as bioavailability can depend on their chemical carriers. The objective of our study was to test the hypothesis that the nature of n-3 PUFA carrier results in different metabolic effects related to adiposity, oxidative stress and inflammation. METHODS: 4 groups of C57BL/6 mice were fed for 8 weeks low fat (LF) diet or high-fat (HF, 20%) diets. Two groups of high-fat diets were supplemented with long-chain n-3 PUFA either incorporated in the form of phospholipids (HF-ω3PL) or triacylglycerols (HF-ω3TG). RESULTS: Both HF-ω3PL and HF-ω3TG diets reduced the plasma concentrations of (i) inflammatory markers such as monocyte chemoattractant protein-1 (MCP-1) and interleukin 6 (IL-6), (ii) leptin and (iii) 4-hydroxy-2-nonenal (4-HNE), a marker of n-6 PUFA-derived oxidative stress compared with the control HF diet. Moreover, in both HF-ω3PL and HF-ω3TG groups, MCP-1 and IL-6 gene expressions were decreased in epididymal adipose tissue and the mRNA level of gastrointestinal glutathione peroxidase GPx2, an antioxidant enzyme, was decreased in the jejunum compared with the control HF diet. The type of n-3 PUFA carrier affected other outcomes. The phospholipid form of n-3 PUFA increased the level of tocopherols in epididymal adipose tissue compared with HF-ω3TG and resulted in smaller adipocytes than the two others HF groups. Adipocytes in the HF-ω3PL and LF groups were similar in size distribution. CONCLUSION: Supplementation of mice diet with long-chain n-3 PUFA during long-term consumption of high-fat diets had the same lowering effects on inflammation regardless of triacyglycerol or phospholipid carrier, whereas the location of these fatty acids on a PL carrier had a major effect on decreasing the size of adipocytes that was not observed with the triacyglycerol carrier. Altogether, these results would support the development functional foods containing LC n-3 PUFA in the form of PL in order to prevent some deleterious outcomes associated with the development of obesity.

20.
Am J Clin Nutr ; 97(1): 23-36, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23235199

ABSTRACT

BACKGROUND: Prolonged postprandial hypertriglyceridemia is a potential risk factor for cardiovascular diseases. In the context of obesity, this is associated with a chronic imbalance of lipid partitioning oriented toward storage and not toward ß-oxidation. OBJECTIVE: We tested the hypothesis that the physical structure of fat in a meal can modify the absorption, chylomicron transport, and further metabolic handling of dietary fatty acids. DESIGN: Nine normal-weight and 9 obese subjects were fed 40 g milk fat (+[(13)C]triacylglycerols), either emulsified or nonemulsified, in breakfasts of identical composition. We measured the postprandial triacylglycerol content and size of the chylomicron-rich fraction, plasma kinetics of [(13)C]fatty acids, exogenous lipid oxidation with breath-test/indirect calorimetry, and fecal excretion. RESULTS: The emulsified fat resulted in earlier (>1 h) and sharper chylomicron and [(13)C]fatty acid peaks in plasma than in spread fat in both groups (P < 0.0001). After 2 h, the emulsified fat resulted in greater apolipoprotein B-48 concentrations (9.7 ± 0.7 compared with 7.1 ± 0.9 mg/L; P < 0.05) in the normal-weight subjects than did the spread fat. In the obese subjects, emulsified fat resulted in a 3-fold greater chylomicron size (218 ± 24 nm) compared with the spread fat (P < 0.05). The emulsified fat induced higher dietary fatty acid spillover in plasma and a sharper (13)CO(2) appearance, which provoked increased exogenous lipid oxidation in each group: from 45% to 52% in normal-weight subjects (P < 0.05) and from 40% to 57% in obese subjects (P < 0.01). CONCLUSION: This study supports a new concept of "slow vs fast fat," whereby intestinal absorption can be modulated by structuring dietary fat to modulate postprandial lipemia and lipid ß-oxidation in humans with different BMIs. This trial was registered at clinicaltrials.gov as NCT01249378.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , Fatty Acids/administration & dosage , Intestinal Absorption , Lipid Metabolism/physiology , Postprandial Period/physiology , Adult , Apolipoprotein B-48/blood , Blood Glucose , Body Mass Index , Breakfast , Breath Tests , Calorimetry, Indirect , Carbon Dioxide , Chylomicrons/analysis , Chylomicrons/metabolism , Cross-Over Studies , Fatty Acids, Nonesterified/blood , Fatty Acids, Omega-3/blood , Feces/chemistry , Humans , Hunger/physiology , Hyperlipidemias/metabolism , Insulin/blood , Kinetics , Male , Meals , Obesity/physiopathology , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL