Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Eur Rev Med Pharmacol Sci ; 27(6 Suppl): 33-38, 2023 12.
Article in English | MEDLINE | ID: mdl-38112946

ABSTRACT

OBJECTIVE: COVID-19 is a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged as a global pandemic in 2019. Its main symptoms include fever, cough, fatigue, and, in severe cases, pneumonia, acute respiratory distress syndrome, and organ failure, which can be life-threatening. Various therapies have been proposed for treating COVID-19, among which antiviral drugs and monoclonal antibodies, but natural molecules have gained attention for their potential antiviral properties against various viral infections, including COVID-19. The use of hydroxytyrosol (HT), a polyphenol from the olive tree possessing antioxidant, anti-inflammatory, and anti-viral properties, has been proposed to reduce COVID-19 infection. SUBJECTS AND METHODS: A total of 443 subjects were recruited from four centers, located in Albania, Germany, and Italy (Milan and Trento provinces). The participants were randomly assigned to receive either the dietary supplement containing HT or a placebo for a duration of one month. RESULTS: Analysis of the study data revealed that, among the subjects who tested positive for COVID-19 during the study, 36% belonged to the group that received the dietary supplement containing HT, while 64% belonged to the placebo group. The difference was statistically significant. These findings suggest that the use of a dietary supplement containing HT may have a possible preventive effect against COVID-19 infection. CONCLUSIONS: The study's results indicate that the dietary supplement containing HT shows promise as a possible preventive measure against COVID-19 infection. Large-scale, randomized clinical trials and animal studies could be useful to provide more definitive conclusions on HT's possible potential preventive effects against COVID-19, which could potentially supplement existing therapies and contribute to fighting COVID-19 infection.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Treatment Outcome , Dietary Supplements
2.
Clin Ter ; 174(Suppl 2(6)): 159-168, 2023.
Article in English | MEDLINE | ID: mdl-37994760

ABSTRACT

Background: Prickly pear (Opuntia) extracts have garnered con-siderable attention in recent years due to their promising medicinal and nutritional properties. This comprehensive review explores the multifaceted potential of prickly pear extracts in mitigating various chronic diseases, including cardiovascular diseases (CVDs), diabetes, obesity, cancer, neuronal diseases, and renal diseases. Methods: This review provides a comprehensive overview of the diverse therapeutic applications of Opuntia extracts in managing chronic diseases. The collective evidence underscores the potential of prickly pear as a valuable natural resource for addressing global health challenges. Further research and clinical investigations are warranted to unlock the full potential of Opuntia in the prevention and treatment of chronic diseases. Results: Studies have suggested that the bioactive compounds within prickly pear may influence glucose metabolism by improving insulin sensitivity, reducing insulin resistance, and modulating gut microbiota composition. These pathways exhibit potential in the reduction of hyperglycemia, which is a fundamental aspect of metabolic syndromes. Opuntia extracts demonstrate also antioxidant, anti-inflammatory capabilities that can contribute to improving health in various conditions. Conclusion: Further research and clinical investigations are warranted to unlock the full potential of Opuntia in the prevention and treatment of chronic diseases.


Subject(s)
Metabolic Syndrome , Opuntia , Humans , Metabolic Syndrome/drug therapy , Opuntia/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Dietary Supplements , Chronic Disease , Fruit
3.
Clin Ter ; 174(Suppl 2(6)): 169-172, 2023.
Article in English | MEDLINE | ID: mdl-37994761

ABSTRACT

Abstract: The legume tree known as carob (Ceratonia siliqua L.) is indigenous to the Mediterranean area and over the centuries its pods had been traditionally used mostly as animal feed. However, it has gained great attention in human nutrition due to the molecular compounds it contains, which could offer many potential health benefits: for example, carob is renowned for its high content of fiber, vitamins, and minerals. Moreover, in traditional medicine it is credited with the ability to control glucose metabolism and gut microbiome. Modern science has also extensively acknowledged the numerous health advantages deriving from its consumption, including its anti-diabetic, anti-inflammatory, and antioxidant properties. Due to its abundant contents of pectin, gums, and polyphenols (such as pinitol), carob has garnered significant attention as a well-researched plant with remarkable therapeutic properties. Notably, carob is extensively used in the production of semi-finished pastry products, particularly in ice cream and other creams (especially as a substitute for cocoa/chocolate): these applications indeed facilitate the exploration of its positive effects on glucose metabolism. Our study aimed at examining the effects of carob extract on intestinal microbiota and glucose metabolism. In this review, we conducted a thorough examination, comprising in vitro, in vivo, and clinical trials to appraise the consequences on human health of polyphenols and pectin from different carob species, including recently discovered ones with high polyphenol contents. Our goal was to learn more about the mechanisms through which carob extract can support a balanced gut flora and improve one's glucose metabolism. These results could influence the creation of novel functional foods and dietary supplements, to help with the management and prevention of chronic illnesses like diabetes and obesity.


Subject(s)
Fabaceae , Gastrointestinal Microbiome , Animals , Humans , Polyphenols/pharmacology , Glucose , Pectins
4.
Clin Ter ; 174(Suppl 2(6)): 183-192, 2023.
Article in English | MEDLINE | ID: mdl-37994763

ABSTRACT

Abstract: Nutrigenomics, a rapidly evolving field that bridges genetics and nutrition, explores the intricate interactions between an individual's genetic makeup and how they respond to nutrients. At its core, this discipline focuses on investigating Single Nucleotide Polymorphisms (SNPs), the most common genetic variations, which significantly influence a person's physiological status, mood regulation, and sleep patterns, thus playing a pivotal role in a wide range of health out-comes. Through decoding their functional implications, researchers are able to uncover genetic factors that impact physical fitness, pain perception, and susceptibility to mood disorders and sleep disruptions. The integration of nutrigenomics into healthcare holds the promise of transformative interventions that cater to individual well-being. Notable studies shed light on the connection between SNPs and personalized responses to exercise, as well as vulnerability to mood disorders and sleep disturbances. Understanding the intricate interplay between genetics and nutrition informs targeted dietary approaches, molding individual health trajectories. As research advances, the convergence of genetics and nourishment is on the brink of reshaping healthcare, ushering in an era of personalized health management that enhances overall life quality. Nutrigenomics charts a path toward tailored nutritional strategies, fundamentally reshaping our approach to health preservation and preventive measures.


Subject(s)
Chiropractic , Nutrigenomics , Humans , Polymorphism, Single Nucleotide , Diet , Exercise
SELECTION OF CITATIONS
SEARCH DETAIL