Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Spinal Cord ; 57(11): 979-984, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31289366

ABSTRACT

STUDY DESIGN: Experimental study. OBJECTIVES: Compromised cerebrovascular function likely contributes to elevated neurological risk in spinal cord injury (SCI). Passive heating offers many cardiovascular and neurological health benefits; therefore, we aimed to determine the effects of an acute bout of heating on cerebrovascular function in chronic SCI. METHODS: Persons with cervical SCI (n = 15) and uninjured controls (CON; n = 15) completed 60 min of lower limb hot water immersion (40 °C). Assessments of middle cerebral (MCA) and posterior cerebral artery (PCA) velocities, pulsatilities, and neurovascular coupling (NVC) were performed using transcranial Doppler ultrasound. Duplex ultrasonography was used to index cerebral blood flow via the internal carotid artery (ICA), and carotid-femoral pulse-wave velocity (PWV) was measured using tonometry. The NVC response was quantified as the peak hyperemic value during 30-s cycles of visual stimulation. RESULTS: Mean arterial pressure changed differentially with heating [mean (standard deviation); SCI: +6(14) mmHg, CON: -8(12) mmHg; P = 0.01]. There were no differences in any intracranial artery measures (all P > 0.05), except for small (~10%) increases in MCA conductance in CON after heating vs. SCI (interaction P = 0.006). Resting ICA flow was greater in SCI vs. CON (P = 0.03) but did not change with heating in either group (interaction P = 0.34). There were also no between-group differences in the NVC response (ΔPCA conductance) pre- [SCI: 29(19)% vs. CON: 30(9)%] or post-heating [SCI 30(9)% vs. 25(9)%; interaction P = 0.22]. CONCLUSIONS: Mild acute heating does not impair or improve cerebrovascular function in SCI or CON. Thus, further study of the effects of chronic heating interventions are warranted.


Subject(s)
Cerebrovascular Circulation/physiology , Cervical Vertebrae/diagnostic imaging , Hyperthermia, Induced/methods , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/physiopathology , Adult , Cervical Vertebrae/injuries , Female , Humans , Hyperthermia, Induced/trends , Male , Middle Aged , Spinal Cord Injuries/therapy
2.
Am J Physiol Heart Circ Physiol ; 316(3): H722-H733, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30575438

ABSTRACT

Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.


Subject(s)
E-Selectin/blood , Endothelium, Vascular/physiopathology , Heat-Shock Response , Spinal Cord Injuries/physiopathology , Adult , Arteries/diagnostic imaging , Biomarkers/blood , Cervical Vertebrae/injuries , Endothelium, Vascular/diagnostic imaging , Female , Hemorheology , Humans , Hyperthermia, Induced , Male , Microvessels/diagnostic imaging , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL