Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biofactors ; 49(4): 820-830, 2023.
Article in English | MEDLINE | ID: mdl-36929162

ABSTRACT

Although puberty is known to influence obesity progression, the molecular mechanisms underlying the role of sexual maturation in obesity-related complications remains largely unexplored. Here, we delve into the impact of puberty on the most relevant pathogenic hallmarks of obesity, namely oxidative stress and inflammation, and their association with trace element blood status. To this end, we studied a well-characterized observational cohort comprising prepubertal (N = 46) and pubertal (N = 48) children with obesity. From all participants, plasma and erythrocyte samples were collected and subjected to metallomics analysis and determination of classical biomarkers of oxidative stress and inflammation. Besides the expected raise of sexual hormones, pubertal children displayed better inflammatory and oxidative control, as reflected by lower levels of C-reactive protein and oxidative damage markers, as well as improved antioxidant defense. This was in turn accompanied by a healthier multielemental profile, with increased levels of essential elements involved in the antioxidant system and metabolic control (metalloproteins containing zinc, molybdenum, selenium, and manganese) and decreased content of potentially deleterious species (total copper, labile free iron). Therefore, our findings suggest that children with obesity have an exacerbated inflammatory and oxidative damage at early ages, which could be ameliorated during pubertal development by the action of trace element-mediated buffering mechanisms.


Subject(s)
Pediatric Obesity , Selenium , Trace Elements , Humans , Child , Antioxidants/metabolism , Oxidative Stress , Inflammation , Puberty
2.
Methods Mol Biol ; 2571: 123-132, 2023.
Article in English | MEDLINE | ID: mdl-36152156

ABSTRACT

In this chapter, we describe a metallomics method based on protein precipitation under non-denaturing conditions and further analysis by inductively coupled plasma mass spectrometry for high-throughput metal speciation in plasma and erythrocyte samples. This methodology enables to study the total multielemental profile of these biological matrices, as well as to quantify the metal fractions conforming the metallometabolome and the metalloproteome. Furthermore, the analytical coverage comprises several essential and toxic metal elements, namely aluminum, arsenic, cadmium, cobalt, chromium, copper, iron, lithium, manganese, molybdenum, nickel, lead, selenium, vanadium, and zinc. Altogether, the metallomics method here proposed represents an excellent approach to comprehensively characterize the metal biodistribution in human peripheral blood, which would enable to decipher the role of metal homeostasis in health and disease, and particularly in childhood obesity.


Subject(s)
Arsenic , Pediatric Obesity , Selenium , Aluminum , Cadmium/analysis , Child , Chromium , Cobalt , Copper/analysis , Humans , Iron/analysis , Lithium , Manganese , Molybdenum , Nickel , Tissue Distribution , Vanadium , Zinc/analysis
3.
Front Public Health ; 10: 1016819, 2022.
Article in English | MEDLINE | ID: mdl-36711380

ABSTRACT

Diet is one of the most important modifiable lifestyle factors for preventing and treating obesity. In this respect, the Mediterranean diet (MD) has proven to be a rich source of a myriad of micronutrients with positive repercussions on human health. Herein, we studied an observational cohort of children and adolescents with obesity (N = 26) to explore the association between circulating blood trace elements and the degree of MD adherence, as assessed through the KIDMED questionnaire. Participants with higher MD adherence showed better glycemic/insulinemic control and a healthier lipid profile, as well as raised plasma levels of selenium, zinc, cobalt, molybdenum, and arsenic, and increased erythroid content of selenium. Interestingly, we found that these MD-related mineral alterations were closely correlated with the characteristic metabolic complications behind childhood obesity, namely hyperglycemia, hyperinsulinemia, and dyslipidemia (p < 0.05, |r| > 0.35). These findings highlight the pivotal role that dietary trace elements may play in the pathogenesis of obesity and related disorders.


Subject(s)
Diet, Mediterranean , Pediatric Obesity , Selenium , Trace Elements , Adolescent , Child , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL