Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Curr Dev Nutr ; 8(4): 102147, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38645881

ABSTRACT

Background: Infant formula in the United States contains abundant iron, raising health concerns about excess iron intake in early infancy. Objectives: Using a piglet model, we explored the impact of high iron fortification and prebiotic or synbiotic supplementation on iron homeostasis and trace mineral bioavailability. Methods: Twenty-four piglets were stratified and randomly assigned to treatments on postnatal day 2. Piglets were individually housed and received an iron-adequate milk diet (AI), a high-iron milk diet (HI), HI supplemented with 5% inulin (HI with a prebiotic [HIP]), or HIP with an oral gavage of Ligilactobacillus agilis YZ050, an inulin-fermenting strain, every third day (HI with synbiotic [HIS]). Milk was provided in 14 meals daily, mimicking formula feeding in infants. Fecal consistency score and body weight were recorded daily or every other day. Blood and feces were sampled weekly, and tissues collected on postnatal day 29. Data were analyzed using mixed model analysis of variance with repeated measures whenever necessary. Results: Diet did not affect growth. HI increased hemoglobin, hematocrit, and serum iron compared to AI. Despite marginal adequacy, AI upregulated iron transporter genes and maintained satisfactory iron status in most pigs. HI upregulated hepcidin gene expression in liver, caused pronounced tissue iron deposition, and markedly increased colonic and fecal iron. Inulin supplementation, regardless of L. agilis YZ050, not only attenuated hepatic iron overload but also decreased colonic and fecal iron without altering pH or the expression of iron regulatory genes. HI lowered zinc (Zn) and copper (Cu) in the duodenum and liver compared to AI, whereas HIP and HIS further decreased Zn and Cu in the liver and diminished colonic and fecal trace minerals. Conclusions: Early-infancy excessive iron fortification causes iron overload and compromises Zn and Cu absorption. Inulin decreases trace mineral absorption likely by enhancing gut peristalsis and stool frequency.

2.
Int J Biol Macromol ; 256(Pt 2): 128472, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029906

ABSTRACT

Bioactive oligosaccharides with the potential to improve human health, especially in modulating gut microbiota via prebiotic activity, are available from few natural sources. This work uses polysaccharide oxidative cleavage to generate oligosaccharides from beet pulp, an agroindustry by-product. A scalable membrane filtration approach was applied to purify the oligosaccharides for subsequent in vitro functional testing. The combined use of nano-LC/Chip Q-TOF MS and UHPLC/QqQ MS allowed the evaluation of the oligosaccharide profile and their monosaccharide complexity. A final product containing roughly 40 g of oligosaccharide was obtained from 475 g of carbohydrates. Microbiological bioactivity assays indicated that the product obtained herein stimulated desirable commensal gut bacteria. This rapid, reproducible, and scalable method represents a breakthrough in the food industry for generating potential prebiotic ingredients from common plant by-products at scale. INDUSTRIAL RELEVANCE: This work proposes an innovative technology based on polysaccharide oxidative cleavage and multi-stage membrane purification to produce potential prebiotic oligosaccharides from renewable sources. It also provides critical information to evidence the prebiotic potential of the newly generated oligosaccharides on the growth promotion ability of representative probiotic strains of bifidobacteria and lactobacilli.


Subject(s)
Beta vulgaris , Gastrointestinal Microbiome , Humans , Oligosaccharides/pharmacology , Polysaccharides/pharmacology , Carbohydrates , Prebiotics
3.
J Pediatr Gastroenterol Nutr ; 75(4): 535-542, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35881967

ABSTRACT

OBJECTIVES: To compare the impact of two probiotic supplements on fecal microbiota and metabolites, as well as on gut inflammation in human milk-fed preterm infants. METHODS: In this single-center observational cohort study, we assessed the effects of Bifidobacterium longum subsp. infantis or Lactobacillus reuteri supplementation on the infant gut microbiota by 16S rRNA gene sequencing and fecal metabolome by 1 H nuclear magnetic resonance spectroscopy. Fecal calprotectin was measured as a marker of enteric inflammation. Aliquots of human or donor milk provided to each infant were also assessed to determine human milk oligosaccharide (HMO) content. RESULTS: As expected, each probiotic treatment was associated with increased proportions of the respective bacterial taxon. Fecal HMOs were significantly higher in L. reuteri fed babies despite similar HMO content in the milk consumed. Fecal metabolites associated with bifidobacteria fermentation products were significantly increased in B. infantis supplemented infants. Fecal calprotectin was lower in infants receiving B. infantis relative to L. reuteri ( P < 0.01, Wilcoxon rank-sum test) and was negatively associated with the microbial metabolite indole-3-lactate (ILA). CONCLUSIONS: This study demonstrates that supplementing an HMO-catabolizing Bifidobacterium probiotic results in increased microbial metabolism of milk oligosaccharides and reduced intestinal inflammation relative to a noncatabolizing Lactobacillus probiotic in human milk-fed preterm infants. In this context, Bifidobacterium may provide greater benefit in human milk-fed infants via activation of the microbiota-metabolite-immune axis.


Subject(s)
Microbiota , Probiotics , Bifidobacterium , Bifidobacterium longum subspecies infantis/metabolism , Humans , Infant , Infant, Newborn , Infant, Premature , Inflammation , Leukocyte L1 Antigen Complex/metabolism , Oligosaccharides/metabolism , RNA, Ribosomal, 16S
4.
Nutrients ; 13(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34959944

ABSTRACT

Streptococcus salivarius (S. salivarius) K12 supplementation has been found to reduce the risk of recurrent upper respiratory tract infections. Yet, studies have not reported the effect of supplementation on oral S. salivarius K12 levels or the salivary microbiome. This clinical trial was designed to determine how supplementation with S. salivarius K12 influences the oral microbiome. In a randomized, double-blind, placebo-controlled trial, 13 healthy adults received a probiotic powder (PRO) containing Lactobacillus acidophilus, Bifidobacterium lactis, and S. salivarius K12 and 12 healthy adults received a placebo-control powder (CON) (n = 12) for 14 consecutive days. Oral S. salivarius K12 and total bacteria were quantified by qPCR and the overall oral microbiome was measured using 16S rRNA amplicon sequencing. Supplementation significantly increased mean salivary S. salivarius K12 levels by 5 logs compared to baseline for the PRO group (p < 0.0005), which returned to baseline 2 weeks post-supplementation. Compared with the CON group, salivary S. salivarius K12 was 5 logs higher in the PRO group at the end of the supplementation period (p < 0.001). Neither time nor supplementation influenced the overall oral microbiome. Supplementation with a probiotic cocktail containing S. salivarius K12 for two weeks significantly increased levels of salivary S. salivarius K12.


Subject(s)
Dietary Supplements , Healthy Volunteers , Probiotics/administration & dosage , Probiotics/pharmacology , Saliva/microbiology , Streptococcus salivarius , Adult , Double-Blind Method , Female , Humans , Male , Recurrence , Respiratory Tract Infections/prevention & control
5.
Nutrients ; 13(3)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804415

ABSTRACT

Breastfeeding is the gold standard for feeding infants because of its long-term benefits to health and development, but most infants in the United States are not exclusively breastfed in the first six months. We enrolled 24 infants who were either exclusively breastfed or supplemented with formula by the age of one month. We collected diet information, stool samples for evaluation of microbiotas by 16S rRNA sequencing, and blood samples for assessment of immune development by flow cytometry from birth to 6 months of age. We further typed the Bifidobacterium strains in stool samples whose 16S rRNA sequencing showed the presence of Bifidobacteriaceae. Supplementation with formula during breastfeeding transiently changed the composition of the gut microbiome, but the impact dissipated by six months of age. For example, Bifidobacterium longum, a bacterial species highly correlated with human milk consumption, was found to be significantly different only at 1 month of age but not at later time points. No immunologic differences were found to be associated with supplementation, including the development of T-cell subsets, B cells, or monocytes. These data suggest that early formula supplementation, given in addition to breast milk, has minimal lasting impact on the gut microbiome or immunity.


Subject(s)
Dietary Supplements/microbiology , Gastrointestinal Microbiome/immunology , Immune System/growth & development , Infant Formula/microbiology , Infant Nutritional Physiological Phenomena/immunology , Breast Feeding/methods , Diet Surveys , Feces/microbiology , Female , Humans , Immune System/microbiology , Infant , Infant, Newborn , Male , RNA, Ribosomal, 16S/isolation & purification , United States
6.
Sci Total Environ ; 750: 141694, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32871373

ABSTRACT

We determined the immediate impact of exposure to antibiotic-treated animals on housing soil microbiome and resistome. Fecal (n = 36) and soil (n = 108) samples from dairy calves (n = 6) treated with and without florfenicol over 30 days were collected. There were temporary changes in the gut microbiome of antibiotic-treated calves as measured by Shannon diversity (16S rRNA gene sequencing; P = 0.03), but not in the housing soil microbiome (P > 0.05). Droplet-digital PCR demonstrated that floR gene increased by 1-log in soil exposed to treated animals (P < 0.001), but it remained relatively stable in the control soil whereby calves were not treated with antibiotic. Resistome in exposed soil was largely modified (P = 0.004) with the overall prevalence of antimicrobial resistance genes (ARGs) significantly elevated (3.8-fold increase by day 10; P = 0.01). In addition to florfenicol, enriched ARGs collectively conferring resistance to tetracyclines, aminoglycosides, sulfonamides, elfamycins, macrolides-lincosamides-streptrogramin A/B, and beta-lactams. Quantitative PCR validated that ARGs including str and tetG in soil exposed to florfenicol-treated calves had gradually increased fold-change difference relative to the control soil over time. Moreover, a greater diversity of transferrable ARGs was observed in exposed soil and these were associated with a greater diversity of bacterial species. Evaluation of on-farm effects to soil in situ after exposure to antibiotic-treated animals can help design effective managements to mitigate antibiotic resistance in food-animal production.


Subject(s)
Anti-Bacterial Agents , Soil , Animals , Cattle , Farms , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Thiamphenicol/analogs & derivatives
7.
J Nutr Biochem ; 79: 108340, 2020 05.
Article in English | MEDLINE | ID: mdl-32028108

ABSTRACT

Human milk oligosaccharides play a vital role in the development of the gut microbiome in the human infant. Although oligosaccharides derived from bovine milk (BMO) differ in content and profile with those derived from human milk (HMO), several oligosaccharide structures are shared between the species. BMO are commercial alternatives to HMO, but their fate in the digestive tract of healthy adult consumers is unknown. Healthy human subjects consumed two BMO doses over 11-day periods each and provided fecal samples. Metatranscriptomics of fecal samples were conducted to determine microbial and host gene expression in response to the supplement. Fecal samples were also analyzed by mass spectrometry to determine levels of undigested BMO. No changes were observed in microbial gene expression across all participants. Repeated sampling enabled subject-specific analyses: four of six participants had minor, yet statistically significant, changes in microbial gene expression. No significant change was observed in the gene expression of host cells exfoliated in stool. Levels of BMO excreted in feces after supplementation were not significantly different from baseline and were not correlated with dosage or expressed microbial enzyme levels. Collectively, these data suggest that BMO are fully fermented in the human gastrointestinal tract upstream of the distal colon. Additionally, the unaltered host transcriptome provides further evidence for the safety of BMO as a dietary supplement or food ingredient. Further research is needed to investigate potential health benefits of this completely fermentable prebiotic that naturally occurs in cow's milk.


Subject(s)
Feces/chemistry , Gastrointestinal Microbiome/genetics , Milk/chemistry , Oligosaccharides/analysis , Oligosaccharides/genetics , Adolescent , Adult , Animals , Cross-Over Studies , Dietary Supplements , Female , Glycomics , Humans , Male , Milk, Human/chemistry , Transcriptome , Young Adult
8.
Nat Commun ; 10(1): 4406, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31562300

ABSTRACT

Antimicrobial resistance is a global public health concern, and livestock play a significant role in selecting for resistance and maintaining such reservoirs. Here we study the succession of dairy cattle resistome during early life using metagenomic sequencing, as well as the relationship between resistome, gut microbiota, and diet. In our dataset, the gut of dairy calves serves as a reservoir of 329 antimicrobial resistance genes (ARGs) presumably conferring resistance to 17 classes of antibiotics, and the abundance of ARGs declines gradually during nursing. ARGs appear to co-occur with antibacterial biocide or metal resistance genes. Colostrum is a potential source of ARGs observed in calves at day 2. The dynamic changes in the resistome are likely a result of gut microbiota assembly, which is closely associated with diet transition in dairy calves. Modifications in the resistome may be possible via early-life dietary interventions to reduce overall antimicrobial resistance.


Subject(s)
Animal Feed/analysis , Diet , Drug Resistance, Multiple, Bacterial/genetics , Feces/microbiology , Gene Regulatory Networks , Genes, Bacterial/genetics , Animals , Animals, Newborn , Anti-Bacterial Agents/pharmacology , Cattle , Colostrum/microbiology , Dairying , Drug Resistance, Multiple, Bacterial/drug effects , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Manure/microbiology , Metagenomics/methods , RNA, Ribosomal, 16S/genetics , Soil Microbiology
9.
J Nutr ; 149(6): 1075-1088, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31006815

ABSTRACT

BACKGROUND: Infancy is a crucial period for establishing the intestinal microbiome. This process may be influenced by vitamin A (VA) status because VA affects intestinal immunity and epithelial integrity, factors that can, in turn, modulate microbiome development. OBJECTIVES: The aim of this study was to determine if neonatal VA supplementation (VAS) affected the abundance of Bifidobacterium, a beneficial commensal, or of Proteobacteria, a phylum containing enteric pathogens, in early (6-15 wk) or late (2 y) infancy. Secondary objectives were to determine if VAS affected the abundance of other bacterial taxa, and to determine if VA status assessed by measuring plasma retinol was associated with bacterial abundance. METHODS: Three hundred and six Bangladeshi infants were randomized by sex and birthweight status (above/below median) to receive 1 VA dose (50,000 IU) or placebo within 48 h of birth. Relative abundance at the genus level and above was assessed by 16S rRNA gene sequencing. A terminal restriction fragment-length polymorphism assay was used to identify Bifidobacterium species and subspecies at 6 wk. RESULTS: Linear regression showed that Bifidobacterium abundance in early infancy was lower in boys (median, 1st/3rd quartiles; 0.67, 0.52/0.78) than girls (0.73, 0.60/0.80; P = 0.003) but that boys receiving VAS (0.69, 0.55/0.78) had higher abundance than boys receiving placebo (0.65, 0.44/0.77; P = 0.039). However this difference was not seen in girls (VAS 0.71, 0.54/0.80; placebo 0.75, 0.63/0.81; P = 0.25). VAS did not affect Proteobacteria abundance. Sex-specific associations were also seen for VA status, including positive associations of plasma retinol with Actinobacteria (the phylum containing Bifidobacterium) and Akkermansia, another commensal with possible health benefits, for girls in late infancy. CONCLUSIONS: Better VA status in infancy may influence health both in infancy and later in life by promoting the establishment of a healthy microbiota. This postulated effect of VA may differ between boys and girls. This trial was registered at clinicaltrials.gov as NCT02027610.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Vitamin A/administration & dosage , Bangladesh , Bifidobacterium/drug effects , Bifidobacterium/isolation & purification , Child, Preschool , Female , Gastrointestinal Microbiome/drug effects , Humans , Infant , Infant Nutritional Physiological Phenomena , Infant, Newborn , Longitudinal Studies , Male , Nutritional Status , Proteobacteria/drug effects , Proteobacteria/isolation & purification , Vitamin A/blood
10.
PLoS One ; 14(1): e0210064, 2019.
Article in English | MEDLINE | ID: mdl-30625189

ABSTRACT

Over half of all children with autism spectrum disorders (ASD) have gastrointestinal (GI) co-morbidities including chronic constipation, diarrhea, and irritable bowel syndrome. The severity of these symptoms has been correlated with the degree of GI microbial dysbiosis. The study objective was to assess tolerability of a probiotic (Bifidobacterium infantis) in combination with a bovine colostrum product (BCP) as a source of prebiotic oligosaccharides and to evaluate GI, microbiome and immune factors in children with ASD and GI co-morbidities. This pilot study is a randomized, double blind, controlled trial of combination treatment (BCP + B. infantis) vs. BCP alone in a cross-over study in children ages 2-11 with ASD and GI co-morbidities (n = 8). This 12-week study included 5 weeks of probiotic-prebiotic supplementation, followed by a two-week washout period, and 5 weeks of prebiotic only supplementation. The primary outcome of tolerability was assessed using validated questionnaires of GI function and atypical behaviors, along with side effects. Results suggest that the combination treatment is well-tolerated in this cohort. The most common side effect was mild gassiness. Some participants on both treatments saw a reduction in the frequency of certain GI symptoms, as well as reduced occurrence of particular aberrant behaviors. Improvement may be explained by a reduction in IL-13 and TNF-α production in some participants. Although limited conclusions can be drawn from this small pilot study, the results support the need for further research into the efficacy of these treatments.


Subject(s)
Autistic Disorder/drug therapy , Colostrum , Gastrointestinal Diseases/drug therapy , Probiotics/therapeutic use , Animals , Autistic Disorder/physiopathology , Cattle , Child , Child, Preschool , Double-Blind Method , Female , Gastrointestinal Diseases/physiopathology , Humans , Interleukin-13/metabolism , Male , Prebiotics , Tumor Necrosis Factor-alpha/metabolism
11.
Annu Rev Food Sci Technol ; 9: 429-450, 2018 03 25.
Article in English | MEDLINE | ID: mdl-29580136

ABSTRACT

Human milk is a unique and complex fluid that provides infant nutrition and delivers an array of bioactive molecules that serve various functions. Glycans, abundant in milk, can be found as free oligosaccharides or as glycoconjugates. Milk glycans are increasingly linked to beneficial outcomes in neonates through protection from pathogens and modulation of the immune system. Indeed, these glycans influence the development of the infant and the infant-gut microbiota. Bifidobacterium species commonly are enriched in breastfed infants and are among a limited group of bacteria that readily consume human milk oligosaccharides (HMOs) and milk glycoconjugates. Given the importance of bifidobacteria in infant health, numerous studies have examined the molecular mechanisms they employ to consume HMOs and milk glycans, thus providing insight into this unique enrichment and shedding light on a range of translational opportunities to benefit at-risk infants.


Subject(s)
Gastrointestinal Microbiome , Milk, Human/chemistry , Milk/chemistry , Polysaccharides/metabolism , Animals , Bifidobacterium/metabolism , Breast Feeding , Carbohydrate Conformation , Cattle , Dietary Supplements , Glycoconjugates/metabolism , Humans , Infant, Newborn , Oligosaccharides/administration & dosage , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Polysaccharides/chemistry , Structure-Activity Relationship
12.
Eur J Nutr ; 57(7): 2513-2528, 2018 Oct.
Article in English | MEDLINE | ID: mdl-28815303

ABSTRACT

PURPOSE: Barley is a low-glycemic index grain that can help diabetic and obese patients. The effect of barley intake depends on the host and the associated gut microbiota. This study investigated the effect of barley intake on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation. METHODS: Obese db/db mice were fed diets with and without barley during 8 weeks; lean mice were used as lean controls. Fecal microbiota was evaluated using 16S marker gene sequencing in a MiSeq instrument; several markers of caecal biochemistry, obesity, and inflammation were also evaluated using standard techniques. RESULTS: Bacterial richness (i.e., Operational Taxonomic Units) and Shannon diversity indexes were similar in all obese mice (with and without barley) and higher compared to lean controls. Barley intake was associated with increased abundances of Prevotella, Lactobacillus, and the fiber-degraders S24-7 (Candidatus Homeothermaceae) compared to both lean and obese controls. The analysis of unweighted UniFrac distances showed a separate clustering of samples for each experimental group, suggesting that consumption of barley contributed to a phylogenetically unique microbiota distinct from both obese and lean controls. Caecal butyrate concentrations were similar in all obese mice, while succinic acid was lower in the barley group compared to obese controls. Barley intake was also associated with lower plasma insulin and resistin levels compared to obese controls. CONCLUSIONS: This study shows that barley intake is associated with a different fecal microbiota, caecal biochemistry, and obesity biomarkers in db/db mice that tend to be more similar to lean controls.


Subject(s)
Cecum/microbiology , Feces/microbiology , Hordeum , Inflammation/diet therapy , Obesity/diet therapy , Animals , Biomarkers/analysis , Dietary Supplements , Gastrointestinal Microbiome , Humans , Inflammation/microbiology , Mice , Mice, Obese , Microbiota , Obesity/microbiology
13.
J Pathol ; 243(4): 431-441, 2017 12.
Article in English | MEDLINE | ID: mdl-28892150

ABSTRACT

Dysregulated bile acid (BA) synthesis or reduced farnesoid X receptor (FXR) levels are found in patients having metabolic diseases, autoimmune hepatitis, and liver cirrhosis or cancer. The objective of this study was to establish the relationship between butyrate and dysregulated BA synthesis-induced hepatitis as well as the effect of butyrate in reversing the liver pathology. Wild-type (WT) and FXR knockout (KO) male mice were placed on a control (CD) or western diet (WD) for 15 months. In the presence or absence of butyrate supplementation, feces obtained from 15-month-old WD-fed FXR KO mice, which had severe hepatitis and liver tumors, were transplanted to 7-month-old WD-fed FXR KO for 3 months. Hepatic phenotypes, microbiota profile, and BA composition were analyzed. Butyrate-generating bacteria and colonic butyrate concentration were reduced due to FXR inactivation and further reduced by WD intake. In addition, WD-fed FXR KO male mice had the highest concentration of hepatic ß-muricholic acid (ß-MCA) and bacteria-generated deoxycholic acid (DCA) accompanied by serious hepatitis. Moreover, dysregulated BA and reduced SCFA signaling co-existed in both human liver cancers and WD-fed FXR KO mice. Microbiota transplantation using butyrate-deficient feces derived from 15-month-old WD-fed FXR KO mice increased hepatic lymphocyte numbers as well as hepatic ß-MCA and DCA concentrations. Furthermore, butyrate supplementation reduced hepatic ß-MCA as well as DCA and eliminated hepatic lymphocyte infiltration. In conclusion, reduced butyrate contributes to the development of hepatitis in the FXR KO mouse model. In addition, butyrate reverses dysregulated BA synthesis and its associated hepatitis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Bile Acids and Salts/metabolism , Butyrates/pharmacology , Hepatitis/drug therapy , Liver Neoplasms/drug therapy , Liver/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bacteria/metabolism , Butyrates/metabolism , Colon/microbiology , Diet, Western , Disease Models, Animal , Dysbiosis , Fatty Acids/metabolism , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Genetic Predisposition to Disease , Hepatitis/metabolism , Hepatitis/microbiology , Hepatitis/pathology , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/microbiology , Liver Neoplasms/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Transplantation , Phenotype , Receptors, Cytoplasmic and Nuclear/deficiency , Receptors, Cytoplasmic and Nuclear/genetics , Signal Transduction
14.
Am J Physiol Gastrointest Liver Physiol ; 312(5): G474-G487, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28280143

ABSTRACT

Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO.NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice.


Subject(s)
Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Intestinal Absorption/drug effects , Milk/chemistry , Obesity/prevention & control , Oligosaccharides/administration & dosage , Prebiotics/administration & dosage , Animals , Diet, High-Fat/adverse effects , Dietary Supplements , Dysbiosis/etiology , Dysbiosis/microbiology , Dysbiosis/physiopathology , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/physiopathology , Treatment Outcome
15.
PeerJ ; 4: e1702, 2016.
Article in English | MEDLINE | ID: mdl-26925326

ABSTRACT

The digestive tract of mammals and other animals is colonized by trillions of metabolically-active microorganisms. Changes in the gut microbiota have been associated with obesity in both humans and laboratory animals. Dietary modifications can often modulate the obese gut microbial ecosystem towards a more healthy state. This phenomenon should preferably be studied using dietary ingredients that are relevant to human nutrition. This study was designed to evaluate the influence of whole-wheat, a food ingredient with several beneficial properties, on gut microorganisms of obese diabetic mice. Diabetic (db/db) mice were fed standard (obese-control) or whole-wheat isocaloric diets (WW group) for eight weeks; non-obese mice were used as control (lean-control). High-throughput sequencing using the MiSeq platform coupled with freely-available computational tools and quantitative real-time PCR were used to analyze fecal bacterial 16S rRNA gene sequences. Short-chain fatty acids were measured in caecal contents using quantitative high-performance liquid chromatography photo-diode array analysis. Results showed no statistical difference in final body weights between the obese-control and the WW group. The bacterial richness (number of Operational Taxonomic Units) did not differ among the treatment groups. The abundance of Ruminococcaceae, a family containing several butyrate-producing bacteria, was found to be higher in obese (median: 6.9%) and WW-supplemented mice (5.6%) compared to lean (2.7%, p = 0.02, Kruskal-Wallis test). Caecal concentrations of butyrate were higher in obese (average: 2.91 mmol/mg of feces) but especially in WW-supplemented mice (4.27 mmol/mg) compared to lean controls (0.97 mmol/mg), while caecal succinic acid was lower in the WW group compared to obese but especially to the lean group. WW consumption was associated with ∼3 times higher abundances of Lactobacillus spp. compared to both obese and lean control mice. Analysis of weighted UniFrac distances revealed a distinctive clustering of lean microbial communities separately from both obese and WW-supplemented mice (p = 0.001, ANOSIM test). Predictive metagenome analysis revealed significant differences in several metabolic features of the microbiota among the treatment groups, including carbohydrate, amino acids and vitamin metabolism (p < 0.01, Kruskal-Wallis test). However, obese and WW groups tended to share more similar abundances of gene families compared to lean mice. Using an in vivo model of obesity and diabetes, this study suggests that daily WW supplementation for eight weeks may not be enough to influence body weight or to output a lean-like microbiome, both taxonomically and metabolically. However, WW-supplementation was associated with several statistically significant differences in the gut microbiome compared to obese controls that deserve further investigation.

16.
Enzyme Microb Technol ; 77: 46-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26138399

ABSTRACT

EndoBI-1 is a recently isolated endo-ß-N-acetylglucosaminidase, which cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core of high mannose, hybrid and complex N-glycans. These N-glycans have selective prebiotic activity for a key infant gut microbe, Bifidobacterium longum subsp. infantis. The broad specificity of EndoBI-1 suggests the enzyme may be useful for many applications, particularly for deglycosylating milk glycoproteins in dairy processing. To facilitate its commercial use, we determined kinetic parameters for EndoBI-1 on the model substrates ribonuclease B and bovine lactoferrin, as well as on concentrated bovine colostrum whey. Km values ranging from 0.25 to 0.49, 0.43 to 1.00 and 0.90 to 3.18 mg/mL and Vmax values ranging from 3.5×10(-3) to 5.09×10(-3), 4.5×10(-3) to 7.75×10(-3) and 1.9×10(-2)to 5.2×10(-2) mg/mL×min were determined for ribonuclease B, lactoferrin and whey, respectively. In general, EndoBI-1 showed the highest apparent affinity for ribonuclease B, while the maximum reaction rate was the highest for concentrated whey. EndoBI-1-released N-glycans were quantified by a phenol-sulphuric total carbohydrate assay and the resultant N-glycan structures monitored by nano-LC-Chip-Q-TOF MS. The kinetic parameters and structural characterization of glycans released suggest EndoBI-1 can facilitate large-scale release of complex, bioactive glycans from a variety of glycoprotein substrates. Moreover, these results suggest that whey, often considered as a waste product, can be used effectively as a source of prebiotic N-glycans.


Subject(s)
Colostrum/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Polysaccharides/metabolism , Whey/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bifidobacterium/enzymology , Bifidobacterium/genetics , Cattle , Colostrum/chemistry , Female , Genes, Bacterial , Glycosylation , Kinetics , Lactoferrin/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/genetics , Polysaccharides/chemistry , Prebiotics , Pregnancy , Ribonucleases/metabolism , Spectrometry, Mass, Electrospray Ionization , Substrate Specificity , Whey/chemistry
17.
Biotechnol Prog ; 31(5): 1331-9, 2015.
Article in English | MEDLINE | ID: mdl-26097235

ABSTRACT

Endo-ß-N-acetylglucosaminidase isolated from B. infantis ATCC 15697 (EndoBI-1) is a novel enzyme that cleaves N-N'-diacetyl chitobiose moieties found in the N-glycan core of high mannose, hybrid, and complex N-glycans. These conjugated N-glycans are recently shown as a new prebiotic source that stimulates the growth of a key infant gut microbe, Bifidobacterium longum subsp. Infantis. The effects of pH (4.45-8.45), temperature (27.5-77.5°C), reaction time (15-475 min), and enzyme/protein ratio (1:3,000-1:333) were evaluated on the release of N-glycans from bovine colostrum whey by EndoBI-1. A central composite design was used, including a two-level factorial design (2(4)) with four center points and eight axial points. In general, low pH values, longer reaction times, higher enzyme/protein ratio, and temperatures around 52°C resulted in the highest yield. The results demonstrated that bovine colostrum whey, considered to be a by/waste product, can be used as a glycan source with a yield of 20 mg N-glycan/g total protein under optimal conditions for the ranges investigated. Importantly, these processing conditions are suitable to be incorporated into routine dairy processing activities, opening the door for an entirely new class of products (released bioactive glycans and glycan-free milk). The new enzyme's activity was also compared with a commercially available enzyme, showing that EndoBI-1 is more active on native proteins than PNGase F and can be efficiently used during pasteurization, streamlining its integration into existing processing strategies.


Subject(s)
Bifidobacterium/enzymology , Dairy Products/analysis , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Polysaccharides/chemistry , Animals , Cattle , Colostrum/chemistry , Glycoproteins/chemistry , Hot Temperature , Hydrogen-Ion Concentration
18.
Biotechnol Prog ; 31(5): 1323-1330, 2015.
Article in English | MEDLINE | ID: mdl-26101185

ABSTRACT

Milk glycoproteins are involved in different functions and contribute to different cellular processes, including adhesion and signaling, and shape the development of the infant microbiome. Methods have been developed to study the complexities of milk protein glycosylation and understand the role of N-glycans in protein functionality. Endo-ß-N-acetylglucosaminidase (EndoBI-1) isolated from Bifidobacterium longum subsp. infantis ATCC 15697 is a recently isolated heat-stable enzyme that cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core. The effects of different processing conditions (pH, temperature, reaction time, and enzyme/protein ratio) were evaluated for their ability to change EndoBI-1 activity on bovine colostrum whey glycoproteins using advanced mass spectrometry. This study shows that EndoBI-1 is able to cleave a high diversity of N-glycan structures. Nano-LC-Chip-Q-TOF MS data also revealed that different reaction conditions resulted in different N-glycan compositions released, thus modifying the relative abundance of N-glycan types. In general, more sialylated N-glycans were released at lower temperatures and pH values. These results demonstrated that EndoBI-1 is able to release a wide variety of N-glycans, whose compositions can be selectively manipulated using different processing conditions.


Subject(s)
Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Polysaccharides/chemistry , Animals , Bifidobacterium/enzymology , Cattle , Chemical Phenomena , Colostrum , Glycoproteins/chemistry , Glycosylation , Hydrogen-Ion Concentration , Milk Proteins/chemistry , Pilot Projects , Temperature
19.
Food Funct ; 5(9): 2298-308, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25066634

ABSTRACT

Proanthocyanidin (PAC) consumption has been linked to better colonic health, but PACs are poorly absorbed, making them a target for colonic metabolism. The resulting metabolites are low molecular weight and could potentially be absorbed. To understand the effects of dietary PACs it would be important to resolve the metabolic issue and link these changes to microbial population changes in a suitable model for human digestion. Here, six crossbred female pigs were fed a diet containing 1% (w/w) of MegaNatural® Gold grape seed extract (GSE) daily for 6 days. Fecal samples were analyzed by normal phase LC coupled to fluorescence detection and LC-MS/ToF. DNA was extracted from pig fecal samples and the V3/V4 region of the 16S rRNA gene was sequenced using an Illumina MiSeq. Intact parent PACs (dimer-pentamer) were observed in the feces on days 3 and 6 at similar high levels (∼400 mg kg(-1) total) during ingestion of GSE but were absent 48 h post-feeding. The major phenolic metabolites were 4-hydroxyphenylvaleric acid and 3-hydroxybenzoic acid which increased by ∼30 and 3 mg kg(-1) respectively. The GSE diet also caused an ecological shift in the microbiome, dramatically increasing Lachnospiraceae, Clostridales, Lactobacillus and Ruminococcacceae. The relationship between dietary PACs and colon health may be attributable to the altered bacterial populations or phenolic compounds in the colon.


Subject(s)
Animal Feed/analysis , Bacteria/isolation & purification , Feces/microbiology , Grape Seed Extract/metabolism , Microbiota , Phenols/metabolism , Proanthocyanidins/metabolism , Swine/microbiology , Vitis/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Colon/metabolism , Colon/microbiology , Eating , Feces/chemistry , Female , Swine/metabolism
20.
Bioresour Technol ; 101(22): 8790-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20663662

ABSTRACT

Cost effective use of lignocellulosic biomass for bio-based chemical production requires the discovery of novel strains and processes. Lactobacillus pentosus JH5XP5 is a carbon catabolite repression negative mutant which utilizes glucose and pentoses derived from lignocellulosic biomass in the media simultaneously. With a broad range of carbon substrates, L. pentosus JH5XP5 produced a significant amount of ethanol without acetate formation. The yields of ethanol were 2.0- to 2.5-fold higher than those of lactate when glucose, galactose or maltose was used either as a single carbon source or simultaneously with glucose. L. pentosus JH5XP5 was successfully used in an integrated process of simultaneous saccharification and mixed sugar fermentation of rice straw hydrolysate. During the fermentation, the enzyme activities for the saccharification of cellulose were not diminished. Moreover glucose, xylose, and arabinose sugars derived from rice straw hyrolysate were consumed concurrently as if a single carbon source existed and no sugars or cellulosic fiber remained after the fermentation.


Subject(s)
Carbohydrate Metabolism/physiology , Ethanol/metabolism , Lactobacillus/classification , Lactobacillus/metabolism , Oryza/microbiology , Plant Components, Aerial/microbiology , Plant Extracts/metabolism , Ethanol/isolation & purification , Hydrolysis , Metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL