Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Neuroimmune Pharmacol ; 16(4): 743-755, 2021 12.
Article in English | MEDLINE | ID: mdl-34677731

ABSTRACT

Spike S1 of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) on host cells to enter the cell and initiate COVID-19. Since ACE2 is a favorable enzyme, we were interested in finding a molecule capable of binding spike S1, but not ACE2, and inhibiting the interaction between spike S1 and ACE2. Holy basil (Tulsi) has a long history as a medicine for different human disorders. Therefore, we screened different components of Tulsi leaf and found that eugenol, but not other major components (e.g. ursolic acid, oleanolic acid and ß-caryophylline), inhibited the interaction between spike S1 and ACE2 in an AlphaScreen-based assay. By in silico analysis and thermal shift assay, we also observed that eugenol associated with spike S1, but not ACE2. Accordingly, eugenol strongly suppressed the entry of pseudotyped SARS-CoV-2, but not vesicular stomatitis virus (VSV), into human ACE2-expressing HEK293 cells. Eugenol also reduced SARS-CoV-2 spike S1-induced activation of NF-κB and the expression of IL-6, IL-1ß and TNFα in human A549 lung cells. Moreover, oral treatment with eugenol reduced lung inflammation, decreased fever, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of SARS-CoV-2 spike S1, but not ACE2, by eugenol may be beneficial for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Syzygium , Angiotensin-Converting Enzyme 2 , Animals , Eugenol/pharmacology , HEK293 Cells , Humans , Mice , Ocimum sanctum/metabolism , Protein Binding , SARS-CoV-2 , Spices , Spike Glycoprotein, Coronavirus , Syzygium/metabolism
2.
ChemMedChem ; 14(6): 615-620, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30707493

ABSTRACT

Herein we report the discovery of a novel series of highly potent and selective mitogen-activated protein kinase kinase 4 (MEK4) inhibitors. MEK4 is an upstream kinase in MAPK signaling pathways that phosphorylates p38 MAPK and JNK in response to mitogenic and cellular stress queues. MEK4 is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. Optimization of this series via structure-activity relationships and molecular modeling led to the identification of compound 6 ff (4-(6-fluoro-2H-indazol-3-yl)benzoic acid), a highly potent and selective MEK4 inhibitor. This series of inhibitors is the first of its kind in both activity and selectivity and will be useful in further defining the role of MEK4 in prostate and other cancers.


Subject(s)
Indazoles/chemical synthesis , Indazoles/pharmacology , MAP Kinase Kinase 4/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Drug Evaluation, Preclinical , Humans , Substrate Specificity
3.
J Med Chem ; 58(14): 5637-48, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26098096

ABSTRACT

Activin belongs to the TGFß superfamily, which is associated with several disease conditions, including cancer-related cachexia, preterm labor with delivery, and osteoporosis. Targeting activin and its related signaling pathways holds promise as a therapeutic approach to these diseases. A small-molecule ligand-binding groove was identified in the interface between the two activin ßA subunits and was used for a virtual high-throughput in silico screening of the ZINC database to identify hits. Thirty-nine compounds without significant toxicity were tested in two well-established activin assays: FSHß transcription and HepG2 cell apoptosis. This screening workflow resulted in two lead compounds: NUCC-474 and NUCC-555. These potential activin antagonists were then shown to inhibit activin A-mediated cell proliferation in ex vivo ovary cultures. In vivo testing showed that our most potent compound (NUCC-555) caused a dose-dependent decrease in FSH levels in ovariectomized mice. The Blitz competition binding assay confirmed target binding of NUCC-555 to the activin A:ActRII that disrupts the activin A:ActRII complex's binding with ALK4-ECD-Fc in a dose-dependent manner. The NUCC-555 also specifically binds to activin A compared with other TGFß superfamily member myostatin (GDF8). These data demonstrate a new in silico-based strategy for identifying small-molecule activin antagonists. Our approach is the first to identify a first-in-class small-molecule antagonist of activin binding to ALK4, which opens a completely new approach to inhibiting the activity of TGFß receptor superfamily members. in addition, the lead compound can serve as a starting point for lead optimization toward the goal of a compound that may be effective in activin-mediated diseases.


Subject(s)
Activins/antagonists & inhibitors , High-Throughput Screening Assays , User-Computer Interface , Activins/chemistry , Activins/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Female , Follicle Stimulating Hormone/antagonists & inhibitors , Hep G2 Cells , Humans , Mice , Molecular Docking Simulation , Ovary/cytology , Ovary/drug effects , Protein Conformation , Signal Transduction/drug effects
4.
PLoS One ; 8(12): e81504, 2013.
Article in English | MEDLINE | ID: mdl-24339940

ABSTRACT

Prostate cancer (PCa) is the second highest cause of cancer death in United States males. If the metastatic movement of PCa cells could be inhibited, then mortality from PCa could be greatly reduced. Mitogen-activated protein kinase kinase 4 (MAP2K4) has previously been shown to activate pro-invasion signaling pathways in human PCa. Recognizing that MAP2K4 represents a novel and validated therapeutic target, we sought to develop and characterize an efficient process for the identification of small molecules that target MAP2K4. Using a fluorescence-based thermal shift assay (FTS) assay, we first evaluated an 80 compound library of known kinase inhibitors, thereby identifying 8 hits that thermally stabilized MAP2K4 in a concentration dependent manner. We then developed an in vitro MAP2K4 kinase assay employing the biologically relevant downstream substrates, JNK1 and p38 MAPK, to evaluate kinase inhibitory function. In this manner, we validated the performance of our initial FTS screen. We next applied this approach to a 2000 compound chemically diverse library, identified 7 hits, and confirmed them in the in vitro kinase assay. Finally, by coupling our structure-activity relationship data to MAP2K4's crystal structure, we constructed a model for ligand binding. It predicts binding of our identified inhibitory compounds to the ATP binding pocket. Herein we report the creation of a robust inhibitor-screening platform with the ability to inform the discovery and design of new and potent MAP2K4 inhibitors.


Subject(s)
Drug Evaluation, Preclinical/methods , Fluorometry/methods , MAP Kinase Kinase 4/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Enzyme Stability/drug effects , High-Throughput Screening Assays , Humans , MAP Kinase Kinase 4/chemistry , Small Molecule Libraries/pharmacology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL