Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
JID Innov ; 3(2): 100177, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36876220

ABSTRACT

Psoriasis is characterized by intense pruritus, with a subset of individuals with psoriasis experiencing thermal hypersensitivity. However, the pathophysiology of thermal hypersensitivity in psoriasis and other skin conditions remains enigmatic. Linoleic acid is an omega-6 fatty acid that is concentrated in the skin, and oxidation of linoleic acid into metabolites with multiple hydroxyl and epoxide functional groups has been shown to play a role in skin barrier function. Previously, we identified several linoleic acid‒derived mediators that were more concentrated in psoriatic lesions, but the role of these lipids in psoriasis remains unknown. In this study, we report that two such compounds-9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate-are present as free fatty acids and induce nociceptive behavior in mice but not in rats. By chemically stabilizing 9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate through the addition of methyl groups, we observed pain and hypersensitization in mice. The nociceptive responses suggest an involvement of the TRPA1 channel, whereas hypersensitive responses induced by these mediators may require both TRPA1 and TRPV1 channels. Furthermore, we showed that 9,10,13-trihydroxy-octadecenoate‒induced calcium transients in sensory neurons are mediated through the Gßγ subunit of an unidentified G-protein coupled receptor (GPCR). Overall, mechanistic insights from this study will guide the development of potential therapeutic targets for the treatment of pain and hypersensitivity.

2.
Radiat Res ; 196(4): 331-344, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34324688

ABSTRACT

Signal transduction at sensory neurons occurs via transmembrane flux of cations, which is largely governed by the transient receptor potential (TRP) family of ion channels. It is unknown whether TRP channel activation contributes to the pain that accompanies radiation-induced oral mucositis. This study sought to characterize changes in TRP channel expression and function that occur in the locally irradiated tissues and afferent neurons of mice. Female CD-1 mice received single high-dose (27 Gy) tongue irradiation, or sham irradiation. Animals were euthanized either before overt glossitis developed (days 1 and 5 postirradiation), when glossitis was severe (day 11), or after mice had recovered (days 21 and 45). Tongue irradiation caused upregulation of the Trpv1 gene in trigeminal ganglia (TG) neurons. Other TRP genes (Trpv2, Trpv4, Trpa1, Trpm8) and Gfrα3 (which acts upstream of several TRP channels) were also upregulated in TGs and/or tongue tissue, in response to radiation. Ex vivo calcium imaging experiments demonstrated that the proportions of TG neurons responding to histamine (an activator of TRPV1, TRPV4 and TRPA1), TNF-α (an activator of TRPV1, TRPV2 and TRPV4), and capsaicin (a TRPV1 agonist), were increased as early as one day after tongue irradiation; these changes persisted for at least 21 days. In a subsequent experiment, we found that genetic deletion of TRPV1 mitigated weight loss (a surrogate marker of pain severity) in mice with severe glossitis. The results intimate that various TRP channels, and TRPV1 in particular, should be explored as analgesic targets for patients experiencing pain after oral irradiation.


Subject(s)
Transient Receptor Potential Channels , Animals , Calcium , Female , Mice , Neurons , Trigeminal Ganglion , Up-Regulation
3.
Front Neurosci ; 13: 1009, 2019.
Article in English | MEDLINE | ID: mdl-31607850

ABSTRACT

Voltage-gated calcium channels (VGCCs) are important mediators of pain hypersensitivity during inflammatory states, but their role in sensory nerve growth remains underexplored. Here, we assess the role of the N-type calcium channel Cav2.2 in the complete Freund's adjuvant (CFA) model of inflammatory pain. We demonstrate with in situ hybridization and immunoblotting, an increase in Cav2.2 expression after hind paw CFA injection in sensory neurons that respond to thermal stimuli, but not in two different mechanosensitive neuronal populations. Further, Cav2.2 upregulation post-CFA correlates with thermal but not mechanical hyperalgesia in behaving mice, and this hypersensitivity is blocked with a specific Cav2.2 inhibitor. Voltage clamp recordings reveal a significant increase in Cav2.2 currents post-CFA, while current clamp analyses demonstrate a significant increase in action potential frequency. Moreover, CFA-induced sensory nerve growth, which involves the extracellular signal-related kinase (ERK1/2) signaling pathway and likely contributes to inflammation-induced hyperalgesia, was blocked with the Cav2.2 inhibitor. Together, this work uncovers a role for Cav2.2 during inflammation, demonstrating that VGCC activity can promote thermal hyperalgesia through both changes in firing rates of sensory neurons as well as promotion of new neurite outgrowth.

4.
Indian J Med Res ; 141(4): 454-62, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26112847

ABSTRACT

BACKGROUND & OBJECTIVES: Osteoarthritis (OA) is a degenerative disease characterized by joint pain and progressive loss of articular cartilage. Entada pursaetha has been traditionally used in the treatment of inflammatory disease, liver ailment, etc. In this study we investigated suppressive effect of ethanolic extract of E. pursaetha (EPE) on monosodium iodoacetate (MIA)-induced osteoarthritis pain and disease progression by histopathological changes in joints in a rat model. METHODS: OA was induced in right knee of rat by intra-articular injection of 3 mg of MIA and characterized by pathological progression of disease and pain of affected joint. Spontaneous movements, mechanical, thermal and cold sensitivity were monitored at days 0 (before drug and MIA injection), 7, 14 and 21 of MIA administration. EPE (30, 100 and 300 mg/kg), vehicle or etoricoxib (10 mg/ kg; reference drug) were administered daily for 21 days by oral route. RESULTS: EPE at various doses significantly reduced mechanical, heat, cold hyperalgesia and increased the horizontal and vertical movements in intra-articular MIA injected rats. EPE prevented the damage to cartilage structure and reduced the cellular abnormalities. Articular cartilage of rats treated with EPE at 300 mg/kg group was almost normal with well-developed smooth surface and chondrocytes were distributed individually or arranged in column. INTERPRETATION & CONCLUSIONS: The present findings showed that the EPE was not only able to mitigate pain and hyperalgesia but also inhibited MIA-induced cartilage degeneration in vivo. EPE may have the potential to become therapeutic modality in the treatment of osteoarthritis. However, further studies need to be done to confirm these findings in other models and clinical trials.


Subject(s)
Arthritis, Experimental/drug therapy , Osteoarthritis/drug therapy , Pain/drug therapy , Plant Extracts/administration & dosage , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Disease Models, Animal , Fabaceae/chemistry , Humans , Injections, Intra-Articular , Iodoacetates/toxicity , Male , Osteoarthritis/chemically induced , Osteoarthritis/pathology , Pain/pathology , Plant Extracts/chemistry , Rats
5.
J Surg Res ; 197(2): 363-73, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25908100

ABSTRACT

BACKGROUND: The aim of the present study was to assess the effect of seven days daidzein pretreatment in cecal ligation and puncture (CLP) model of sepsis. METHODS: We assessed the survival benefit of daidzein and its effect on lung injury in CLP-induced sepsis in mice and determined the bacterial load in peritoneal fluid, blood, and lung homogenates. Tumor necrosis factor α (TNF-α) and corticosterone levels were measured by enzyme-linked immunosorbent assay; relative mRNA expression was estimated by real-time polymerase chain reaction, and standard biochemical techniques were used to measure nitrite level, myeloperoxidase activity, and vascular permeability. RESULTS: Daidzein pretreatment for seven days at a dose of 1 mg/kg body weight subcutaneously increased the survival time of septic mice. Daidzein decreased the bacterial load in peritoneal fluid, blood, and lungs, reduced the tumor necrosis factor α and nitrite level in plasma, and partially suppressed lung injury by reducing vascular permeability and myeloperoxidase activity in septic mice. Further, it restored the relative mRNA expressions of inducible nitric oxide synthase, glucocorticoid receptor α, and glucocorticoid receptor ß genes in septic lungs were restored by daidzein pretreatment. CONCLUSIONS: Daidzein pretreatment for 7 d in sepsis increased the survival time in mice, which may be relate to decrease in bacterial load, anti-inflammatory effect, and protection from lung injury.


Subject(s)
Isoflavones/therapeutic use , Phytoestrogens/therapeutic use , Sepsis/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Animals , Bacterial Load , Biomarkers/metabolism , Cecum/surgery , Corticosterone/metabolism , Drug Administration Schedule , Enzyme-Linked Immunosorbent Assay , Injections, Subcutaneous , Male , Mice , Nitric Oxide/metabolism , Nitrites/metabolism , Peroxidase/metabolism , Real-Time Polymerase Chain Reaction , Sepsis/metabolism , Sepsis/microbiology , Sepsis/mortality , Treatment Outcome , Tumor Necrosis Factor-alpha/metabolism
6.
Mol Cell Neurosci ; 43(1): 157-63, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19853036

ABSTRACT

Here we make use of neural ablation to investigate the properties of the TrpV1-expressing neurons in the trigeminal and dorsal root ganglia of mice. Resiniferotoxin (RTX), a potent TrpV1 agonist, administered either by direct injection in the ganglion or intrathecally killed approximately 70% of TrpV1 cells and resulted in modest thermal analgesia. Interestingly, after carageenan injection in the hind paw, the analgesic effects of RTX were dramatically increased with mice now paradoxically showing far less response to heat applied at sites of inflammation. This additional carageenan and RTX-induced analgesia was transient, lasting less than 2 days, and likely resulted from deafferentation of remaining TrpV1 neurons. Remarkably, although RTX affected sensitivity to heat, mechanical sensitivity (both of normal and inflamed tissue) was completely unaltered by toxin-mediated silencing of the TrpV1 sensory input. Thus, our data demonstrate that TrpV1 neurons are selectively tuned nociceptors that mediate responses to thermal but not mechanical pain and insinuate a labeled line model for somatosensory coding.


Subject(s)
Nociceptors/metabolism , Pain/physiopathology , TRPV Cation Channels/metabolism , Thermosensing/physiology , Analgesics/pharmacology , Animals , Capsaicin/pharmacology , Diterpenes/pharmacology , Male , Mechanoreceptors/drug effects , Mechanoreceptors/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mustard Plant , Nociceptors/cytology , Nociceptors/drug effects , Pain Measurement , Plant Oils/pharmacology , Sensory System Agents/pharmacology , Stress, Mechanical , TRPV Cation Channels/agonists , TRPV Cation Channels/genetics , Thermosensing/drug effects , Trigeminal Nerve/drug effects , Trigeminal Nerve/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL