Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34894926

ABSTRACT

The present study investigated the therapeutic effects of the curcumin derivative 3-[(1E)-2-(1H-indol-6-yl)ethenyl]-5-[(1E)-2-[2-methoxy-4-(2-pyridylmethoxy)phenyl]ethenyl]-1H-pyrazole (GT863) in amyotrophic lateral sclerosis (ALS). The inhibitory effect of GT863 on superoxide dismutase 1 (SOD1) aggregation was evaluated in cell-free assays. GT863 interfered with the conformational changes of the SOD1 protein and later, oligomeric aggregation. Furthermore, its antioxidant, anti-inflammatory, and neuroprotective effects were evaluated in cell-free and cultured cell assays. GT863 inhibited H2O2- and glutamate-induced cytotoxicity and activated an antioxidant responsive element pathway. Additionally, in vivo effects of GT863 in the ALS mice model were evaluated by its oral administration to H46R mutant SOD1 transgenic mice. Rotarod test showed that GT863 administration significantly slowed the progression of motor dysfunction in the mice. In addition, GT863 substantially reduced highly-aggregated SOD1, further preserving large neurons in the spinal cord of GT863-treated mice. Collectively, these results indicated that GT863 could be a viable therapeutic agent with multiple vital actions for the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Curcumin , Mice , Animals , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Antioxidants/therapeutic use , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/therapeutic use , Mice, Transgenic , Superoxide Dismutase/genetics , Disease Models, Animal , Spinal Cord/metabolism
2.
Nat Commun ; 11(1): 162, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919357

ABSTRACT

The emergence of drug-resistant influenza type A viruses (IAVs) necessitates the development of novel anti-IAV agents. Here, we target the IAV hemagglutinin (HA) protein using multivalent peptide library screens and identify PVF-tet, a peptide-based HA inhibitor. PVF-tet inhibits IAV cytopathicity and propagation in cells by binding to newly synthesized HA, rather than to the HA of the parental virus, thus inducing the accumulation of HA within a unique structure, the inducible amphisome, whose production from the autophagosome is accelerated by PVF-tet. The amphisome is also produced in response to IAV infection in the absence of PVF-tet by cells overexpressing ABC transporter subfamily A3, which plays an essential role in the maturation of multivesicular endosomes into the lamellar body, a lipid-sorting organelle. Our results show that the inducible amphisomes can function as a type of organelle-based anti-viral machinery by sequestering HA. PVF-tet efficiently rescues mice from the lethality of IAV infection.


Subject(s)
Antiviral Agents/pharmacology , Hemagglutinins, Viral/metabolism , Influenza A virus/growth & development , Orthomyxoviridae Infections/prevention & control , Peptides/pharmacology , ATP-Binding Cassette Transporters/biosynthesis , Animals , Autophagosomes/metabolism , Dogs , Drug Evaluation, Preclinical/methods , Endosomes/metabolism , Female , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Peptide Library , Sf9 Cells , Spodoptera
3.
Neurobiol Aging ; 39: 69-81, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26923403

ABSTRACT

Tau is a key protein in the pathogenesis of various neurodegenerative diseases, which are categorized as tauopathies. Because the extent of tau pathologies is closely linked to that of neuronal loss and the clinical symptoms in Alzheimer's disease, anti-tau therapeutics, if any, could be beneficial to a broad spectrum of tauopathies. To learn more about tauopathy, we developed a novel transgenic nematode (Caenorhabditis elegans) model that expresses either wild-type or R406W tau in all the neurons. The wild-type tau-expressing worms exhibited uncoordinated movement (Unc) and neuritic abnormalities. Tau accumulated in abnormal neurites that lost microtubules. Similar abnormalities were found in the worms that expressed low levels of R406W-tau but were not in those expressing comparative levels of wild-type tau. Biochemical studies revealed that tau is aberrantly phosphorylated but forms no detergent-insoluble aggregates. Drug screening performed in these worms identified curcumin, a major phytochemical compound in turmeric, as a compound that reduces not only Unc but also the neuritic abnormalities in both wild-type and R406W tau-expressing worms. Our observations suggest that microtubule stabilization mediates the antitoxicity effect of curcumin. Curcumin is also effective in the worms expressing tau fragment, although it does not prevent the formation of tau-fragment dimers. These data indicate that curcumin improves the tau-induced neuronal dysfunction that is independent of insoluble aggregates of tau.


Subject(s)
Caenorhabditis elegans/physiology , Curcumin/pharmacology , Curcumin/therapeutic use , Neurons/physiology , Tauopathies/drug therapy , Tauopathies/genetics , Animals , Animals, Genetically Modified , Disease Models, Animal , Gene Expression , Neurons/metabolism , Protein Aggregation, Pathological , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism
4.
Nat Commun ; 6: 10216, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26671725

ABSTRACT

Neurofibrillary tangles, composed of hyperphosphorylated tau fibrils, are a pathological hallmark of Alzheimer's disease; the neurofibrillary tangle load correlates strongly with clinical progression of the disease. A growing body of evidence indicates that tau oligomer formation precedes the appearance of neurofibrillary tangles and contributes to neuronal loss. Here we show that tau oligomer formation can be inhibited by compounds whose chemical backbone includes 1,2-dihydroxybenzene. Specifically, we demonstrate that 1,2-dihydroxybenzene-containing compounds bind to and cap cysteine residues of tau and prevent its aggregation by hindering interactions between tau molecules. Further, we show that orally administered DL-isoproterenol, an adrenergic receptor agonist whose skeleton includes 1,2-dihydroxybenzene and which penetrates the brain, reduces the levels of detergent-insoluble tau, neuronal loss and reverses neurofibrillary tangle-associated brain dysfunction. Thus, compounds that target the cysteine residues of tau may prove useful in halting the progression of Alzheimer's disease and other tauopathies.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Alzheimer Disease/metabolism , Catechols/pharmacology , Cysteine/drug effects , Isoproterenol/pharmacology , Neurofibrillary Tangles/drug effects , Neurons/drug effects , tau Proteins/drug effects , Adrenergic beta-Agonists/chemistry , Animals , Behavior, Animal/drug effects , Blotting, Western , Brain/drug effects , Brain/metabolism , Catechols/chemistry , Catechols/metabolism , Cell Line, Tumor , Cysteine/metabolism , Disease Models, Animal , Disease Progression , Drug Evaluation, Preclinical , Isoproterenol/chemistry , Mice , Mice, Transgenic , Neurofibrillary Tangles/metabolism , Neurons/pathology , Polymerization , tau Proteins/genetics , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL